Check for
Updates

AGILE: Lightweight and Efficient Asynchronous GPU-SSD
Integration

Zhuoping Yang

Brown University

Providence, USA
zhuoping_yang@brown.edu

Alex Jones
Syracuse University
Syracuse, USA
akj@syr.edu

Abstract

GPUs are critical for compute-intensive applications, yet emerging
workloads such as recommender systems, graph analytics, and data
analytics often exceed GPU memory capacity. Existing solutions
allow GPUs to use CPU DRAM or SSDs as external memory, and the
GPU-centric approach enables GPU threads to directly issue NVMe
requests, further avoiding CPU intervention. However, current
GPU-centric approaches adopt synchronous I/O, forcing threads to
stall during long communication delays.

We propose AGILE, a lightweight asynchronous GPU-centric
I/O library that eliminates deadlock risks and integrates a flexi-
ble HBM-based software cache. AGILE overlaps computation and
I/0, improving performance by up to 1.88x across workloads with
diverse computation-to-communication ratios. Compared to BaM
on DLRM, AGILE achieves up to 1.75X speedup through efficient
design and overlapping; on graph applications, AGILE reduces soft-
ware cache overhead by up to 3.12x and NVMe I/O overhead by
up to 2.85%; AGILE also lowers per-thread register usage by up to
1.32X.

CCS Concepts

« Information systems — Storage architectures; - Comput-
ing methodologies — Parallel computing methodologies; -
Hardware — External storage.

Keywords

GPUs, SSDs, Asynchronous I/O, Software-managed cache, Memory
hierarchy, Storage systems

ACM Reference Format:

Zhuoping Yang, Jinming Zhuang, Xingzhen Chen, Alex Jones, and Peipei
Zhou. 2025. AGILE: Lightweight and Efficient Asynchronous GPU-SSD
Integration. In The International Conference for High Performance Computing,
Networking, Storage and Analysis (SC °25), November 16-21, 2025, St Louis,
MO, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/
3712285.3759778

90¢0

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.

SC 25, St Louis, MO, USA

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1466-5/25/11

https://doi.org/10.1145/3712285.3759778

1028

Jinming Zhuang
Brown University
Providence, USA
jinming_zhuang@brown.edu

Xingzhen Chen

Brown University

Providence, USA
xingzhen_chen@brown.edu

Peipei Zhou
Brown University
Providence, USA
peipei_zhou@brown.edu

1 Introduction

Graphics Processing Units (GPUs) have become the de facto ac-
celerator widely used for computationally intensive applications
such as graphics rendering [26, 53], deep learning [26, 33], and
high-performance computing [58, 59, 66]. However, modern ap-
plications are increasingly data-intensive, often processing data
that far exceeds GPU memory capacity [19, 31, 50]. For example,
training large-scale models like GPTs [1, 5] involves billions of
parameters and terabytes of training data [49]. Similarly, analyzing
large graphs for social networking or ranking websites touches on
billions of vertices and trillions of edges [9]. Recommender sys-
tems also handle data ranging from gigabytes to petabytes [51].
Moreover, while GPUs’ computational power has increased rapidly,
their memory capacity has not kept the same pace [19]. These new
trends necessitate innovative memory extension techniques and
optimizations.

To expand GPUs’ memory, existing solutions resort to CPU mem-
ory [2, 44, 52, 65]. For example, Nvidia Unified Memory enables
GPUs and CPUs to share a single memory address space so that
GPUs can access CPU memory without explicit memory copies [44].
However, scaling the CPU memory to tens of terabytes is still
considered a challenge [48]. Another approach is extending GPU
memory using SSDs [3, 4, 62], which provide much larger space
but entail sophisticated designs for better performance. GPUDi-
rect Storage [40] enables direct data transfers between GPUs and
SSDs without involving the memory of the CPU as an intermedi-
ary, thereby eliminating the overhead of using CPU memory as
a staging buffer. Microsoft proposes DeepNVMe [32], which of-
fers additional optimizations, such as asynchronous I/O operations
and integration with ZeRO-Infinity [50] for large neural networks.
However, GPUDirect Storage and DeepNVMe still require the CPU
to initiate the data transfer. As the computational workloads are of-
floaded onto the GPUs, the CPU lacks visibility to requests made by
GPU threads in flight. Consequently, frequent synchronization be-
tween the GPU and the host CPU is necessary, leading to significant
performance degradation [48].

The emerging interconnect technology CXL is built on top of
PCle and offers new protocols, such as CXL .memory and CXL . cache,
to efficiently extend host memory [14]. CXL .memory allows devices
to use load or store instructions to access other devices’ memory
or storage. CXL.cache further enables devices to coherently cache
memory that physically resides on other devices. CXL-enabled

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0002-7655-4080
https://orcid.org/0000-0003-3659-339X
https://orcid.org/0000-0003-4865-3708
https://orcid.org/0000-0001-7498-0206
https://orcid.org/0000-0002-0493-1844
https://doi.org/10.1145/3712285.3759778
https://doi.org/10.1145/3712285.3759778
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://doi.org/10.1145/3712285.3759778
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3712285.3759778&domain=pdf&date_stamp=2025-11-15

SC ’25, November 16-21, 2025, St Louis, MO, USA

SSDs are promising candidates for helping maintain coherence for
memory expansion with SSDs [63], but are not currently a complete
solution for expanding GPUs’ memory. This is because the flash
memory access time is at the microsecond level [63], which is orders
of magnitude higher than High-Bandwidth Memory (HBM), where
CXL is primarily deployed. A solution to hide the latency of SSDs
is still necessary.

Overlapping memory access with computation is a common
technique used to tolerate slow data movement [8, 20, 62]. For
example, ALCOP [22] utilizes the CUDA-provided asynchronous
data movement API to explore multi-stage pipelining. This avoids
GPU idle time caused by synchronous data movement. However,
inside a GPU kernel, only asynchronous data movement from global
memory (or pinned host memory) to shared memory can be initiated
using existing CUDA APIs [30], and the GPU’s shared memory is
limited, e.g., 164 KB per Streaming Multiprocessor on an A100
GPU [41]. Using a larger buffer for asynchronous loads per thread
has been demonstrated to have more performance benefits when
using an overlapping technique [28].

GPU-centric storage access is another method to avoid the syn-
chronization overhead between GPUs and CPUs. BaM [48] is the
first GPU-centric method that enables GPU threads to directly ini-
tiate NVMe I/O requests while bypassing the host CPU. It tolerates
long SSD access latency via massive concurrent I/Os enabled by
the GPU’s high parallelism. This approach eliminates CPU inter-
vention overhead. However, it adopts a synchronous access model,
and threads must wait for the I/0 requests to be completed before
concurrently starting computation or issuing other commands. As
a result, communication time cannot be hidden in each GPU thread,
and applications must rely on runtime warp scheduling to preempt
stalled warps and schedule other ready warps to avoid wasting
GPU cycles [25], which is not always effective and leaves space for
further optimization opportunities.

In contrast, an asynchronous I/O model can better tolerate long
latency in accessing SSDs by overlapping communication with com-
putation [27]. However, designing a GPU-centric asynchronous I/O
model is challenging, as the massive GPU threads may compete
on shared resources, e.g., NVMe queues, software-defined cache,
etc., leading to performance degradation. Using locks before access-
ing these shared resources is a common method to avoid resource
conflicts, but in an asynchronous model, allowing threads to hold
locks can lead to deadlock issues. For instance, if multiple threads
asynchronously request SSD data, a request queue can fill prior to
commands that check for completion and subsequently clear the
completed request from the request queue, creating a deadlock. In
addition, efficient lock handling is necessary to avoid performance
degradation from the software API side.

Moreover, BaM [48] only supports a fixed cache policy for its soft-
ware cache on GPUs’ HBM. This limits the cache policy customiza-
tion for various applications. As new caching policies [17, 35, 47] are
continuously designed, it is important for storage systems to choose
the best software-defined caching policy under various workloads
and requirements [60].

To address these needs and challenges, we propose AGILE, a
GPU-centric GPU-SSD integration that enables GPU threads to
issue NVMe requests asynchronously and efficiently while elimi-
nating deadlock risks.

1029

Zhuoping Yang et al.

Our contributions are highlighted as follows:

e We propose AGILE, enabling the GPU to issue NVMe com-
mands asynchronously. To the best of our knowledge, AGILE
is the first GPU-centric asynchronous I/O model.

e We implement a robust lock-based asynchronous transac-
tion mechanism, which allows GPU threads to issue NVMe
commands asynchronously without holding any locks. Our
approach efficiently eliminates possible deadlocks and data
hazards.

e We integrate a flexible software cache hierarchy in AGILE
to utilize GPU HBM, which allows users to customize their
cache policy and provides a simple interface for increased
usability.

e We evaluate AGILE on micro-benchmarking and applica-
tions. The results show that AGILE enables overlapping at
the thread level and achieves up to 1.88% speedup over a syn-
chronous I/O model. Compared with state-of-the-art work,
BaM, AGILE achieves up to 1.75% reduction in end-to-end
execution time on DLRMs; in graph applications, AGILE
demonstrates lower API overhead in managing software
cache and NVMe I/O requests up to 3.12x and 2.85X, respec-
tively; furthermore, AGILE consumes fewer registers and
exhibits up to 1.32X reduction in the usage of registers.

e We open-source AGILE with detailed guides for users to
leverage AGILE and customize AGILE components in various
applications: https://github.com/arc-research-lab/AGILE

2 Background & Design Challenges

In this section, we first introduce the background of the NVMe pro-
tocol and how GPU threads are scheduled and hide memory access
latency in CUDA. Then, we present the challenges in supporting
an asynchronous I/O model on GPUs.

2.1 Background of NVMe Protocol

Non-Volatile Memory Express (NVMe) is a standard protocol that
allows software to communicate with non-volatile memory via
PCle [46]. Software can access an NVMe SSD via an I/O queue pair,
consisting of a submission queue (SQ) and a completion queue (CQ).
With an I/O queue pair, the software is responsible for maintaining
the SQ tail pointer, which indicates the next available SQ entry
(SQE) for a new command, and the CQ head pointer, which is
used to receive the next completion from the SSD. To issue an
NVMe command, the software writes a new command to the next
available SQE and notifies the changes in SQ to the SSD by moving
the SQ tail pointer and updating the new SQ tail by writing to
the corresponding SQ doorbell register in the SSD’s PCle Base
Address Registers (BAR). Then, the SSD fetches the newly added
command, and after execution, the SSD returns a completion to
the next available CQ entry (CQE). After receiving a completion,
the software needs to respond to SSD by increasing the CQ head
pointer and updating the associated CQ doorbell register. This is
necessary for SSDs to release the CQE and reuse it for another
command; otherwise, the SSDs will stall while waiting for available
CQEs. This queue-based approach also allows software to issue
multiple commands in a batch and increase the SQ tail pointer by
the number of newly inserted commands. The software can detect

https://github.com/arc-research-lab/AGILE

AGILE: Lightweight and Efficient Asynchronous GPU-SSD Integration

and process the completion message by either polling the CQ or
responding to an interrupt triggered by the SSD. To achieve high
parallelism, NVMe SSDs allow multiple SQs/CQs to be registered
and used concurrently.

2.2 GPU Threads Scheduling & Asynchronous
Data Movement in CUDA

To meet the increasing high throughput demands, modern GPUs
can execute tens of thousands of threads in parallel via Single
Instruction, Multiple Threads (SIMT) [36]. The GPU threads are
grouped into thread blocks, and the threads in each thread block
will be scheduled onto the same Streaming Multiprocessor (SM)
[38]. If the hardware resource, such as the number of registers and
the shared memory, is enough for an SM to serve more than one
thread block, each SM can accommodate multiple thread blocks
simultaneously. Current GPUs adopt a static resource allocation
model, which can cause SM underutilization. Once the thread blocks
are scheduled onto SMs, they will occupy the SMs until their tasks
are finished. This prevents new thread blocks from being scheduled,
even if the scheduled thread blocks are stalled due to some high-
latency operations. This problem of SM underutilization is mitigated
by warp-level scheduling. The SM will schedule threads at the
granularity of warps (typically 32 threads in a warp). If some warps
stall due to high-latency operations such as fetching data from
memory or SSDs, other ready warps from the same thread block
or different thread blocks can be scheduled to keep the SM busy.
However, this mechanism is not sufficient, especially when many
warps encounter memory or I/O stalls.

To avoid stalls caused by memory access, users can use asyn-
chronous data movement APIs such as cuda: :memcpy_async [39]
or cp.async [36] in CUDA to hide latency with computation tasks.
However, these asynchronous data movement APIs only allow data
transfers from GPU global memory or pinned host memory to
shared memory in SMs [30]. Using larger buffers for asynchro-
nous loads will lead to a higher performance increase [28], but the
shared memory is limited in each SM, e.g., 164 KB per SM on an
A100 GPU [41].

2.3 Design Challenges in Asynchronous
GPU-SSD integration

2.3.1 Deadlock in NVMe Queues. Designing an efficient asynchro-
nous model for GPU-SSD integration is challenging as a massive
number of threads share limited resources such as NVMe queues
and the software cache. Acquiring locks before accessing these re-
sources is necessary to avoid conflicts, but can introduce deadlock.

For NVMe queues, when a thread puts a new NVMe command
into an SQ, the corresponding SQ entry will remain locked to pre-
vent other threads from using the same entry until the SSD has
received the command.

Figure 1 illustrates an example of deadlock when Thread-1 and
Thread-2 need to execute NVMe commands asynchronously in
parallel. First, Thread-1 successfully acquires the SQ and places its
read request into an available entry. However, before this thread
can move to line 3, Thread-2 gains access to the SQ and adds its
request to the last available entry, which fills the SQ (D). Now,
because the SQ is full, both threads become stuck at Line 3, they

1030

SC ’25, November 16-21, 2025, St Louis, MO, USA

a = read_async(..)
b = read_async(..)

1
2

3

4 ...

5 wait(a)@ Not reach
6

7

8

ble! checking available entries

wait(b) — TEEIzoooo @

X release the SQ entries
'y

compute(a, b)

Figure 1: A deadlock example caused by sharing NVMe
queues in asynchronous execution.

continue to check for the next available SQ entry (2). Therefore,
both threads cannot reach (3), where they check the completions in
CQ to confirm their issued commands have been processed by the
SSD and then release locks in SQ. Even though the corresponding
completions become available in the CQ, if Threads-1 and 2 own
all the occupied SQ entries, none can be released @), resulting in a
deadlock.

For larger numbers of threads, this deadlock remains a concern
as many threads will request multiple operands in line 3, hence,
filling the queue prior to anyone reaching 3.

2.3.2 Deadlock in the Software Cache. AGILE promises to offer
flexibility in the software cache policy, and therefore, eliminating
the potential for deadlock caused by the software cache is necessary.
A common scenario resulting in a deadlock is simultaneous threads
accessing multiple cache lines. For example, one compute kernel
needs multiple operands that are stored in different cache lines. To
prevent redundant SSD accesses, once a thread checks the software
cache and the requested data is found—i.e., a cache hit occurs—
access to the corresponding cache lines must be atomic to avoid
eviction before accesses in process are completed. When multiple
threads block cache line eviction while requesting new cache lines,
a deadlock could occur.

2.3.3 Potential Performance Degradation. Flash memory cannot be
accessed randomly, and data is managed at a coarse-grained page
level, typically 4KB per page [18]. Therefore, the software cache
line should align with the SSDs’ granularity. This alignment can
avoid redundant I/Os when multiple threads access different parts
of the same SSD page concurrently. To ensure correctness during
accessing the same cache line simultaneously, atomic operations
are required to avoid conflicts and data hazards. It is crucial to
implement an efficient lock mechanism to prevent performance
degradation and deadlock.

Furthermore, in NVMe queues, although multiple threads can
insert their commands into the same SQ concurrently, updating
the SQ doorbell register must be serialized. This is because concur-
rent writes to the same doorbell registers may cause inconsistent
SQ tail values in SSDs. Besides, the serialization ensures memory
consistency so that the newly submitted commands are visible in
global memory before the SQ doorbell registers are updated. Im-
proper handling of this serialization may also cause performance
degradation.

Lastly, real-world SSD devices only support a small number of
1/O queue pairs compared to the massive living GPU threads. For
example, a maximum of 128 queue pairs in Samsung 980 PRO NVMe
SSD [57]. Therefore, the completions from SSDs tend to concentrate
in a small number of completion queues, which requires an efficient

SC ’25, November 16-21, 2025, St Louis, MO, USA

and low-overhead mechanism to consume the completions to avoid
stalls from SSDs.

3 AGILE Design & Implementation

In this section, we will first give an overview of AGILE in Section 3.1.
Then, we present the main components of AGILE. In Section 3.2, we
will discuss how AGILE avoids the deadlock problem resulting from
NVMe queues and processes completions from SSDs in parallel.
We will discuss how AGILE deals with the serialization process
required by the NVMe SQs and coalescing redundant requests in
Section 3.3. In Section 3.4, we will present the software-managed
cache in AGILE and discuss how AGILE extends cache coherency to
user-specified buffers. Finally, we will present an example program,
illustrating how AGILE can be used, and introduce a debug option
provided in AGILE.

3.1 Overview of AGILE System

Figure 2 presents an overview of the AGILE system, which enables
efficient asynchronous GPU-SSD communication. The system in-
volves three types of hardware, including SSDs, a GPU, and a host
CPU. The host CPU manages admin queues, located in DRAM, to
establish GPU-SSD PCle peer-to-peer (P2P) communication. The
NVMe SSDs are connected to the system via PCle, their PCle BARs
are exposed to the host CPU for management, and their doorbell reg-
isters are registered to GPU for GPU-centric data transfers. Within
the GPU, AGILE consists of a lightweight service to handle I/O
queues for users (Section 3.2), a software controller to manage
cached data in HBM (Section 3.4), and a Share Table to extend
cache coherency to user-specified buffers (Section 3.4.1). Users can
interact with AGILE through the AGILE controller (AGILE CTRL),
which provides simple APIs for requesting or accessing data in
SSDs or the software cache.

To establish the PCle P2P communication, the SSDs and the
GPU must be able to access the other device’s memory. To let an
NVMe SSD access I/O queues (SQs/CQs) and the software cache,
we need to allocate a contiguous memory space on GPU HBM,
pin the memory space to avoid being swapped out, and get the
physical address of the memory space to enable Direct Memory
Access (DMA) for the SSD to access the GPU HBM. GDRCopy [42]
is designed for direct GPU memory access from third-party devices.
It runs in kernel space and serves userspace calls for allocating and
pinning contiguous memory on the GPU. We modify the GDRCopy
kernel module and invoke nvidia_p2p_put_pages in the kernel
space, enabling userspace applications to access the mapping table
that translates virtual addresses into physical addresses of GPU
memory. Then, the physical addresses of SQs/CQs are registered to
SSDs via the admin queues on the host CPU. To let the GPU notify
NVMe SSDs after generating new commands, we use memory-
mapping (mmap) to expose the SSDs’ PCIe BAR to userspace and then
register the doorbell registers to the GPU using cudaHostRegister
with the cudaHostRegisterIoMemory flag. After this initialization
process, the GPU threads can insert NVMe commands to SQs in
HBM and update the doorbell registers to notify the NVMe SSDs
directly, and the NVMe SSDs are able to fetch commands in GPU
HBM, process them, and update the completion messages to CQs
in GPU HBM directly. In AGILE, the initialization process requires

1031

Zhuoping Yang et al.

CPU intervention and must be performed at the beginning of the
program using AGILE.

<——— Control Path <+«———— Data Path

8 NVMEO NVME1 NVME2
% PCle BAR DB Reg PCle BAR pB Reg PCle BAR DB Reg
GPU-HBM @@@@]
__10Queues
$ $ i1
-} User :AGlLE CTRL| Service || Share-Table |
o
¢ |+ code
ot GPU GPU
Interface CTRL
e
S || CPU-DRAM | € |
% 1tAdmin Queues;
Host Code

Figure 2: Overview of system architecture adopting AGILE.

AGILE provides two types of asynchronous APIs and an array-
like synchronous APIL The asynchronous API prefetch(src) is
used to issue data requests from SSDs to the GPU software cache,
and then the user threads can access the data directly in the GPU
software cache. Another asynchronous AP, async_issue(src,dst),
is similar to cuda: :memcpy_async [39] or cp.async [36] in CUDA,
but the src and dst in AGILE are more flexible and can be either
SSDs’ addresses or user-specified buffers in GPUs’ global mem-
ory. By using user-specified buffers with async_issue(src,dst),
GPU threads can save multiple data chunks for later use safely
without holding locks in the software cache, thereby avoiding the
deadlocks described in Section 2.3.2. However, the increased flex-
ibility of src and dst in async_issue(src,dst) may introduce
data hazards, and we will present our solution in Section 3.4.1.
The async_issue(src,dst) will return a barrier to let the user
threads know if the data transfer is completed. Lastly, the array-like
synchronous API allows users to simply view the SSDs as a two-
dimensional array, and AGILE automatically checks the software
cache and issues requests if the data is not available.

3.2 AGILE Service

As mentioned in Section 2.3, allowing threads to hold locks on
NVMe queues is risky and can cause deadlock. However, locking
SQs is necessary so that commands do not collide. To address this
problem, we propose a lightweight AGILE service that runs in the
background on the GPU and interacts with user threads.

3.2.1 Avoid deadlock from NVMe queues. To eliminate the dead-
lock risk, AGILE creates a lightweight kernel daemon on the GPU
to keep checking completion queue entries (CQE) for all registered
NVMe CQs in a non-blocking fashion. This service frees the user
threads from the burden of processing completion messages and
automatically releases shared resources for user threads after com-
pletion. Once the AGILE service receives a completion from the
CQs, the corresponding locks in SQs will be released. This allows

AGILE: Lightweight and Efficient Asynchronous GPU-SSD Integration

additional SQ requests to proceed and avoids deadlock even when
user threads issue multiple request commands.

1 def kernel_async_access @

2 a = read_async(..) —lock lock-SQE o .+ '._!'.5.3!9.5.‘.5.@

3 b = read_async(..) + . H

4 ... @ unlock ~(2) Release SQ

5 wait(a) check : :

6 wait(b) T é‘- Notify Thread :
a unlock : :

7 compute(a, b) 3 :

Figure 3: Avoiding NVMe Queue Deadlocks in AGILE.

Figure 3 illustrates the process of how the AGILE service assists
user threads in issuing commands. In Figure 3 line 2, when a user
thread successfully locks the SQ, it can safely enqueue the command
into the SQ entry (D). Then, it will handoff 1ock-SQE to the AGILE
service and receive back a barrier (lock a) representing the status of
the transaction. Thus, when a thread reaches lines 2-3 and cannot
add its requests to the SQ because it is full, once the AGILE service
receives completions from SSDs, it can release the appropriate SQ
entry directly and then clear the appropriate transaction lock 2)
so that the user thread will not be blocked forever. Meanwhile, the
AGILE service will notify the corresponding barrier by clearing the
lock a @ to indicate that the transaction is finished. Finally, in line
5, if the thread arrives at line 5 prior to the SSD access completion,
it will wait for the AGILE service to clear the lock a (@.

Since the completions may be returned out of order relative to the
issued commands, the AGILE service tracks the mapping between
each completion and its corresponding SQE via the Command
Identifier (CID), which is a 16-bit field in the NVMe command and
should be unique to identify commands within a batch using the
same SQ.

3.2.2 Polling Completion Queues (CQs). Processing CQs efficiently
is critical to sustain high throughput in a GPU-centric asynchro-
nous I/0O model. In practice, the NVMe SSDs only support a limited
number of CQs. For example, the Samsung 980 PRO NVMe SSD
supports up to 128 CQs [57]. In contrast, GPU applications typi-
cally involve a great number of threads, many of which need to
share the same CQ. As a result, completions may tend to concen-
trate in a small number of CQs, which could lead to contention
and performance bottlenecks. To ensure timely completion process-
ing, AGILE increases intra-CQ polling parallelism by adopting a
warp-centric CQ polling strategy, where each warp concurrently
processes 32 CQEs within a CQ at every iteration. Meanwhile, AG-
ILE only uses a small number of warps for CQ polling and rotates
across all registered CQs in a round-robin fashion.

Algorithm 1 describes the warp-centric CQ polling routine used
in the AGILE service to process CQs efficiently. When invoked, the
warp is assigned with a specific CQ, and each thread is responsible
for checking a single CQE within a 32-entry window. In the warp-
centric CQ polling service, the threads first load the current polling
offset, the CQ phase bit for monitoring the changes in CQEs, and a
32-bit mask that represents the completion status of the CQEs (line
2). If the corresponding bit in the mask is unset, which indicates
the completion is not received, the threads will compare the CQEs’
phase bit with the expected value. If new completions are found,
the associate bits in the mask will be set to 1 (lines 5-6). When

1032

SC ’25, November 16-21, 2025, St Louis, MO, USA

Algorithm 1 Warp-centric CQ polling

1: function CQ_PorLiNG(cq_idx)

2 of fset, mask, phase_bit « load_CQ(cq_idx)
3 if mask[warp_idx] == 0 then

4 pos « of fset + warp_idx

5: valid « process_CQE(cq_idx, pos, phase_bit)
6 mask[warp_idx] < valid

7 end if

8 if mask == 0xFFFFFFFF then

9: mask < 0

10: update_CQ(cq_idx,of fset)

11: end if

12: update_mask(cq_idx, mask)

13: end function

all threads in the warp detect valid completions, indicated by the
mask being fully set, the polling service considers the window fully
processed. If the window is fully processed, the warp will update
the CQ doorbell register to notify the SSD and reset the mask for the
next round (lines 9-10). The mask will be updated each time to save
the current status of the target CQ (line 12). This warp-coordinated
approach increases the parallelism in processing each CQ while
minimizing the divergence across threads in a warp because all
threads operate on physically contiguous CQEs and follow the same
polling logic.

3.3 AGILE Request Issuing Mechanism

As discussed in Section 2.3.3, the SQs require an efficient serial-
ization mechanism before updating the SQ doorbell registers to
avoid performance degradation. In this subsection, we first present
how user threads issue NVMe commands. Then, we illustrate how
AGILE coalesces redundant requests at the warp level.

3.3.1 Serialization process in NVMe SQs. In AGILE, each SQE is
associated with a lock that can have three possible states: EMPTY,
UPDATED, and ISSUED. Algorithm 2 illustrates the serialization pro-
cess for issuing NVMe commands. When a user thread needs to
issue an NVMe command, it first selects an SQ associated with the
target SSD based on its thread index and attempts to submit the
command to this SQ if it has an available SQE for a new command
(line 2). If the SQ is full, the thread will try to submit commands to
another SQ by simply increasing the index of the target SQ. After
enqueuing the commands to an SQ (line 6), AGILE sets the state of
the corresponding SQE’s lock to UPDATED, which indicates the com-
mand is now visible in the global memory and can be safely notified
to the SSD. To ensure the SSD is properly notified, all threads will
attempt to update the associated SQ doorbell register and verify
whether their commands have been issued (line 9). A thread that
successfully acquires the lock for the SQ doorbell register increases
the SQ tail (line 15), during which it scans the SQEs in order and
updates the SQEs’ states from UPDATED to ISSUED. This process
continues until it encounters an SQE in the EMPTY state, which
either marks the end of the current batch of commands or indicates
that the corresponding SQE is not visible in the global memory
yet. Then, this thread will update the SQ doorbell register and re-
lease the lock (line 15). Finally, all threads verify the states of their
respective SQEs (line 17) to confirm if the commands have been

SC ’25, November 16-21, 2025, St Louis, MO, USA

successfully issued to the SSD. Once the completions are received
by the AGILE service, the corresponding SQEs’ states are reset to
EMPTY, allowing them to be reused for future commands.

Algorithm 2 Serialization process in SQs

1: function ATTEMPT_ENQUEUE(sq_idx, cmd)
2 sqe = check_full(sq_idx)

3 if sge == —1 then

4 return false

5: end if

6 enqueue_cmd(sq_idx, sqe, cmd)

7 update_SQE(sq_idx, sqe, ENQUEUE)

8 repeat

9 status «— Attempt_SQDB(sq_idx, sqe)
10: until status == SUCCESS

11: return true

12: end function

13: function ATTEMPT_SQDB(sq_idx, sqe)

14: if acquire_lock(sq_idx) then

15: move_SQ_tail(sq_idx, sqe)

16: end if

17: return check_SQE(sq_idx, sqe)

18: end function

3.3.2 Coalescing identical requests at the warp level. To avoid re-
dundant requests, AGILE coalesces identical data requests issued
by different threads, which is essential because user threads may
independently request the same data chunk from SSDs.

For prefetch() and the array-like interface, AGILE employs
a two-level coalescing strategy. The first level occurs at the warp
level, where CUDA warp-level primitives [45] are used to examine
duplicate requests. Then, AGILE selects one thread to forward the
request to the second-level coalescing stage. The second level is
handled by the AGILE software cache (Section 3.4), which filters
remaining redundant requests that are not eliminated in the first
warp-level coalescing stage. AGILE prioritizes the warp-level coa-
lescing since accessing the shared software cache requires atomic
operations to maintain consistency, which creates critical sections
and serializes execution. This serialization can cause stalls and dif-
ferent execution paths for threads in a warp, which introduces warp
divergence and degrades overall GPU performance.

For async_issue(src,dst), which mimics cp.async [36] or
cuda: :memcpy_async [39] in CUDA and no warp-level coalescing
is performed. Even if threads in a warp request the same data, each
thread will still obtain its own copy of the requested data. Therefore,
in AGILE, the redundant requests are only coalesced at the software
cache level, and AGILE delegates the warp level optimization to
users. Moreover, async_issue(src,dst) provides more flexibility
compared to the CUDA APIs, which can introduce potential data
hazards. These data hazards are addressed through the Share Table
mechanism, which will be described in Section 3.4.1.

3.4 AGILE Software Cache

A software-managed cache can significantly reduce SSD I/O traffic
by storing frequently accessed SSD data on the device [21, 29, 48].
AGILE also enables this feature and provides built-in cache policies

1033

Zhuoping Yang et al.

as well as interfaces for users to customize cache policies. In AGILE,
all SSD data accesses are routed through the software cache to
ensure coherency and to coalesce the redundant SSD requests.

In AGILE, each cache line has four possible states: INVALID, BUSY,
READY, and MODIFIED. When user threads request any data, AGILE
first checks the user-specified cache policy and obtains the target
cache line index. There will be 4 possible cases: (a) cache hit and
data is valid. If the state of the cache line is READY, or MODIFIED,
it means the data is already in GPU HBM, and the threads can
directly obtain the requested data. (b) cache miss and no eviction
required. In this case, the state is INVALID, and the thread will
issue an NVMe command to load data from SSD to HBM and change
the cache line state to BUSY. (c) cache hit, but the data is invalid.
This happens when the cache line state is BUSY. This means the
data has already been requested by another thread, and this thread
will either wait (synchronous APIs) or append its buffer to the
corresponding linked list. (d) cache miss and eviction required.
This occurs when the cache line is reserved, and the state is not
INVALID. Then, AGILE will trigger a cache line eviction if the cache
line state is READY, MODIFIED, or BUSY. AGILE will simply reset the
cache line if the state is READY, and write MODIFIED cache line to
the SSDs and change the state to BUSY. If the state is BUSY, the
corresponding cache line cannot be evicted until the processing is
finished, and AGILE will let the user-specified GPU software cache
policy decide whether to wait or find another cache line.

3.4.1 Extending Coherency to User-specified Buffers. It is worth not-
ing that async_issue(src,dst) in AGILE is conceptually similar
to cuda: :memcpy_async [39] or cp.async [36] in CUDA, which
enables asynchronous data movement to hide memory latency.
However, the CUDA’s asynchronous APIs are limited to specific
memory paths, i.e., transferring data from the global memory or
pinned host memory into the shared memory on the SM [30]. In
contrast, async_issue(src,dst) in AGILE provides greater flexi-
bility in the source and destination addresses, both of which can
be SSD data or user-specified GPU buffers. This enhanced flexi-
bility, however, introduces potential data hazards. For example, a
thread may issue an async_issue(src,dst) to fetch data from
SSD directly to the user-specified buffer, while other threads can
concurrently access the same data from the AGILE software cache.
If the user-specified buffer or software cache is modified without
coordination, data hazards such as read-after-write (RAW), write-
after-read (WAR), and write-after-write (WAW) can occur, where
threads may observe stale or partially updated data.

To address these data hazards, AGILE provides a compile-time
option to enable the user-specified buffers to be integrated into
the AGILE software cache and safely shared among multiple user
threads. If enabled, by default, AGILE will maintain a hashtable-
based Share Table to track user-specified buffers’ ownership and ap-
ply a software-managed coherency protocol inspired by the MOESI
model [56] to ensure consistency across different access paths.

Unlike the original MOESI model, where each thread maintains
its own copy of data, AGILE maintains the coherency by sharing
the pointers to the user-specified buffers, which allows all threads
to access the same physical memory region. This eliminates redun-
dant data duplication and avoids extra copies between threads. In
AGILE, the MOESI is reinterpreted to reflect the relationship and

AGILE: Lightweight and Efficient Asynchronous GPU-SSD Integration

responsibility between user threads and their shared buffers. Specif-
ically, when a thread requests data for its buffer, the thread receives
exclusive ownership of that buffer. Meanwhile, the Share Table
records the source of the data in the buffer and stores the pointer
to this buffer. When other threads request the same source of data,
the Share Table will return the existing pointer to that buffer and
increment a corresponding reference counter of the shared buffer
to indicate the usage. If any threads attempt to modify the buffer,
the buffer will switch to the Modified State, and the original owner
of the buffer will be responsible for propagating the updates to L2
cache — software cache in GPU HBM - after other threads finish
using the buffer.

When this Share Table is enabled, it will have the highest priority
in the AGILE software cache hierarchy. When new requests arrive,
AGILE will first consult the Share Table to determine if any user
thread owns a valid buffer of the requested data. If no record is
found, AGILE will fall back to the software cache or issue a new
request to the SSD and register this buffer in the Share Table. Similar
to the flexible customization in software cache, AGILE allows users
to design their own sharing policy and integrate it into AGILE
seamlessly to meet various application needs.

3.5 AGILE Abstraction and Software APIs

Listing 1 shows an example GPU program that uses AGILE. Users
can define their software cache policy (line 1) or directly choose
the built-in software cache policies and specify the software cache
policy in line 2. To provide flexibility in software cache and share
table policies, AGILE employs the curiously recurring template
pattern (CRTP) to implement the software cache and share table
control logic. CRTP enables compile-time polymorphism and avoids
using virtual functions. The software cache and the Share Table
policies are specified in line 2.

Because AGILE allows users to provide customized policies,
where processing on locks is necessary and may introduce new
deadlock risks, AGILE provides a debug option at compile time
to track acquired locks within each thread using a lock chain im-
plemented as a linked list (line 6). If this debug option is enabled,
when a thread tries to acquire a target lock but fails, it will scan
all previously acquired locks and mark these acquired locks are
dependent on the target lock to release. Then, it will check if any
acquired lock exists in the dependency chain of the target lock - if a
circular dependence results in a deadlock. If a circular dependency
happens, AGILE will report it to users.

Lines 8 - 19 present the three methods to access SSDs in AGILE.
Line 9 is an example of the prefetch(), which asynchronously
loads the data from a target SSD to the software cache. Line 12
shows how users can register a user-specified buffer to AGILE and
use async_issue(src,dst) to load or store data asynchronously
(lines 13 - 15). For asyncRead (), users need to verify if the transfer
is completed before using (line 14), while the asyncWrite() will
ensure the data is updated to the software cache and the write
command is issued, and the buffer is available right away for other
purposes. AGILE also provides an array-like synchronous API that
views the SSDs as a two-dimensional array, where the first dimen-
sion specifies the SSD indices and the second dimension is the data
position to access (lines 18 - 19).

25
26
27
28
29
30
31

33
34
35
36
37

39
40
41
42
43
44
45
46
47

1034

SC ’25, November 16-21, 2025, St Louis, MO, USA

class GPUCache:public GPUCacheBase<GPUCache>{...};
#define AGILE_CTRL AgileCtrl<GPUCache, ShareTable>
__global__
void kernel (AGILE_CTRL * ctrl, void * data){
AgileLockChain chain;
// Method-1: AGILE prefetch
ctrl->prefetch(dev_idx, blk_idx, chain);
// Method-2: AGILE async_issue
AgileBufPtr buf(data + tid * ctrl->line_size);
ctrl->asyncRead(dev_idx, blk_idx, buf, chain);
buf.wait();
ctrl->asyncWrite(dev_idx, blk_idx, buf, chain);
// Method-3: AGILE array-like synchronous API
auto agileArr = ctrl->getArrayWrap<int>(chain);
int val = agileArr[dev_idx][idx];
3
int main(int argc, char*xx argv){

// GPU Configurations

AGILE_HOST host(...);

// Policy Configurations
SHARE_TABLE_IMPL s_table(...);
GPU_CACHE_IMPL g_cache(...);
host.setGPUCache (g_cache);
host.setShareTable(s_table);

// Add and open target SSDs in the program
host.addNvmeDev (R I
host.addNvmeDev (A I
host.initNvme ();

// Initialize AGILE controller
host.initializeAgile(...);

// CUDA kernel parallelism configurations
host.configKernelParallelism(...);
host.queryOccupancy (kernel);

// Start the lightweight AGILE service
host.startAgile();

// Execute the CUDA kernel
host.runKernel (kernel, args...);

// Stop AGILE service

host.stopAgile();

// Close the opened SSDs
host.closeNvme ();

Listing 1: Example GPU program using AGILE.

Lines 22 - 47 demonstrate the AGILE host-side code executed
on the CPU. At Line 24, users specify the GPU configurations, e.g.,
selecting which GPU to use for the program. Lines 26 - 29 han-
dle the initialization of AGILE’s GPU software cache and share
table policies. AGILE allows multiple NVMe SSDs to be configured
and used simultaneously in the program, as shown in Lines 31
- 33. To utilize SDDs with AGILE, the devices must be bound to
the AGILE-provided NVMe SSD driver, which creates a device file,
/dev/AGILE-NVMe-${PCIe-BDF}, for each SSD. AGILE supports
customized NVMe queue configurations for users to enable priori-
tization control across SSDs. At Line 35, AGILE allocates physically
contiguous memory on HBM for NVMe I/O queues and registers

SC ’25, November 16-21, 2025, St Louis, MO, USA

these queues to the SSDs. Lines 37 - 38 configure the application
kernel’s launch configurations (i.e, gridDim, blockDim), compile
the application kernel, and report the maximum number of active
blocks per SM. The AGILE lightweight runtime service, described
in Section 3.2, must be started (Line 40) and properly terminated
(Line 44) before and after kernel execution (Line 42). Finally, the
opened SSDs need to be closed at Line 46.

4 Evaluation

In the experiments, we first use a micro-benchmark to demonstrate
the advantages of the asynchronous model over a synchronous
model under different workload characteristics. Then, we evalu-
ate the scalability of AGILE using 4KB random read and write
on various numbers of SSDs. To demonstrate the usability of AG-
ILE, we compare AGILE with the state-of-the-art work BaM on
Deep Learning Recommendation Models (DLRMs) and use various
configurations. We further evaluate the API overhead of AGILE
against BaM on graph applications to demonstrate AGILE’s effi-
ciency. Lastly, we report the pre-thread register usage of AGILE
and BaM, which shows that AGILE is more lightweight in terms of
GPU resource consumption.

4.1 Experimental Setup

We evaluate AGILE on a Dell R750 server running Ubuntu 20.04,
equipped with an Nvidia RTX 5000 Ada GPU [43], a Dell Ent NVMe
AGN MU AIC 1.6TB SSD [15], and two Samsung 990 PRO 1TB
SSDs [54]. The GPU and SSDs are attached to the server via PCle
Gen4x16 and Gen4x4, respectively. The Nvidia Driver 550.54 and
the CUDA 12.8 are installed on the server for experiments. The
modified Linux kernel drivers used in AGILE are tested on Linux
5.4.0-200-generic.

4.2 Comparison between asynchronous I/O and
synchronous I/O

We first demonstrate how AGILE’s asynchronous I/O model enables
overlapping between computation and communication to reduce
end-to-end execution time. In this experiment, 1024 threads within
a block are launched to issue 64 NVMe commands and perform
computation on the returned data. In the synchronous mode, com-
putation begins only after all data has been fetched. In contrast, the
AGILE asynchronous mode enables computation and communica-
tion overlapping at the thread level. Ideally, when computation and
communication perfectly overlap with each other, the speedup can
be defined by Equation 1:

1+CTC, 0<CTC<1
Ideal Speedup = 1 1
P P +——, CIC>1 W
CTC

As shown in Figure 4, we illustrate the effectiveness of AGILE’s
thread-level asynchronous model by varying the computation-to-
communication (CTC) ratio from 0 to 2 by increasing the number of
computation iterations. AGILE asynchronous version can achieve
up to 1.88x improvement over the synchronous baseline. The ob-
served speedup increases with CTC until it reaches a peak where
CTC is close to 0.9 and then gradually decreases when CTC fur-
ther increases, which aligns with the theoretical trend. The peak
speedup occurs below CTC equals 1 because certain portions of the

1035

Zhuoping Yang et al.

asynchronous pipeline stages, such as prefetching and the issuing
logic, cannot be fully hidden by either computation or communi-
cation, which limits the ideal overlap. The experimental results
demonstrate that AGILE’s asynchronous I/O model is effective in
hiding communication time, especially when the computation and
communication are balanced.

----- Ideal —A— Async Sync

=R e
ok, NP O N

Speedup
Normalized to Sync

o

o

0.5 1 1.5 2
Computation-to-Communication Ratio

Figure 4: Speedup comparison of asynchronous I/O over syn-
chronous I/O on workloads with different Computation-to-
Communication Ratio (CTC).

—8— 1SSD —®—2SSDs 3 SSDs
g 12
[c) 10
< 8
5 6
2 4
22
© p—
o 0
1 8 64 512 4096 32768 262144

#Request per SSD
Figure 5: AGILE 4KB random read on multiple SSDs

—o— 155D —8—25SDs 35SDs
s
~~
om
Os
K
5 4
£ 2 i
C /
& 0 -
1 8 64 512 4096 32768 262144

#Request per SSD
Figure 6: AGILE 4KB random write on multiple SSDs

4.3 AGILE 4KB random read and write on
multiple SSDs

We evaluate the scalability of AGILE using 4 KB random read and
write using 1, 2, and 3 SSDs, as shown in Figure 5 and Figure 6,
respectively. For experiments with more than one SSD, different
SSDs are accessed in an interleaved manner. For example, requests 0,
2, 4, etc. are issued to SSD1, while requests 1, 3, 5, etc. are directed to
SSD2. In both 4 KB random read and write, AGILE exhibits scalable
performance as the number of requests increases and can leverage
multiple SSDs effectively. For 4KB random reads in Figure 5, the
aggregate bandwidth saturates at 3.7 GB/s, 7.4 GB/s, and 11.1 GB/s
with 1 SSD, 2 SSDs, and 3 SSDs, respectively, after approximately
32K concurrent requests per device. Figure 6 depicts the aggregate
write bandwidth achieved by AGILE in the 4 KB random write
workload, and AGILE saturates at 2.2 GB/s, 4.4 GB/s, and 6.7 GB/s
with 1 SSD, 2 SSDs, and 3 SSDs, respectively.

AGILE: Lightweight and Efficient Asynchronous GPU-SSD Integration

4.4 Evaluation on DLRM inference

We further evaluate AGILE against BaM [48] on Deep Learning
Recommendation Model (DLRM) inference. We use the Criteo 1TB
Click Logs dataset [12] and construct the categorical feature vocab-
ulary using the first three days of data. To ensure consistent and
efficient computation across all experiments, we use cuBLAS [37]
for matrix multiplications. BaM and AGILE are used to fetch em-
bedding vectors to HBM, and their kernels are integrated into the
CUDA stream pipeline with cuBLAS kernels. We keep the same
clock replacement cache policy [10] and set the software cache size
to 2GB for all experiments unless otherwise specified. For NVMe
I/O queue configurations, we use 128 queue pairs, and the queue
depth of each queue is set to 256 by default across all experiments
unless otherwise specified. We use AGILE in both the synchronous
mode (AGILE sync) and the asynchronous mode (AGILE async).
For AGILE sync and BaM implementation, we request data and
perform computation on the requested data within the same epoch.
For AGILE async, we prefetch data for the next epoch to enable
overlapping of communication and computation.

We adopt DLRM architecture from [34] and evaluate several vari-
ants. In addition to projection layers (for dimensional alignment
in matrix multiplication) and activation layers, the bottom MLP in
Config-1 has three matrix multiplication kernels with dimensions
512-512-512, and the top MLP consists of three layers with sizes of
1024-1024-1024. Config-2 reduces the number of matrix multiplica-
tions to one in both the bottom MLP and the top MLP to represent
a less computationally intensive model. In Config-3, we repeat the
matrix multiplications six times to emulate a more computationally
intensive workload. In all configurations, we measure the end-to-
end execution time using a batch size of 2,048 and an epoch size of
10,000.

Figure 7 illustrates the speedup comparison of AGILE in both
synchronous and asynchronous modes relative to BaM across three
DLRM configurations. AGILE sync shows consistent improvement
over BaM, achieving speedups of 1.3%, 1.39%, and 1.27x in Config-
1, Config-2, and Config-3, respectively. The AGILE async further
improves the performance by overlapping data movement with
computation and reaches 1.48x, 1.63%, and 1.32X speedups in the
same configurations.

B BaM " AGILE (sync) M AGILE (async)

s 2
@ 1.63
o 1.48
g 915 13 I 1.39 I 127 1.32
T ©
[OIN] 1
o N
Q_ —
E 05 | |
S Config-1 Config-2 Config-3

Figure 7: Speedup comparison of AGILE (async and sync
modes) over BaM on different recommendation models.

To understand how AGILE performs under different workload
granularities, we evaluate AGILE’s speedup across a wide range of
batch sizes using DLRM Config-1, which assesses the scalability
of AGILE and BaM. Figure 8 depicts the speedup of AGILE in sync
and async modes normalized to the BaM baseline across batch
sizes ranging from 1 to 2048. AGILE sync mode shows stable gains

1036

SC ’25, November 16-21, 2025, St Louis, MO, USA

over BaM with speedup from 1.18x to 1.30X. AGILE async also
consistently outperforms AGILE sync across all batch sizes and
reaches the peak speedup to 1.75X at a batch size of 16. These
results demonstrate AGILE’s ability to overlap computation and
computation at scale. The results also indicate that the AGILE async
benefits more when the batch size is smaller and near 16 in this
DLRM inference, where the opportunity to hide communication is
more significant.

B BaM AGILE (sync) M AGILE (async)

° 1.75

1.8 .
N2 168 1.68
€ 016 1.56 157
[1.46 1.46 143 1.48
o 139
> D14 136 1.40
S S 1.26f 1.251 1.27) 1-304 1308 ; »¢ 13 126 ; , 128 1.30
> © 12 . 1.18
- 0
]
0 2
o
(%)

16 32 64 128 256 512 10242048
Batch Size

Figure 8: Speedup comparison of AGILE (async and sync

modes) and BaM across varying batch sizes in DLRM infer-

ence.

1 2 4 8

- H BaM AGILE (sync) B AGILE (async)
1.6

]

% '214 141 1.44 1.46 1.46

£ 0" 1.33 1.32

= ®©

Q mi)

=2

5 2

§ o 1

o 8

& os

1 2 4 8 16
#10 Queue Pairs

Figure 9: Speedup comparison of AGILE (async and sync

modes) and BaM under varying numbers of I/O queue pairs

in DLRM inference.

We further study the sensitivity of NVMe queue settings for both
AGILE and BaM using DLRM Config-1 and a batch size of 2048.
Specifically, we reduce the queue depth to 64 and sweep the number
of queue pairs from 1 to 16, which introduces greater contention
in the NVMe queues. Figure 9 demonstrates that both AGILE sync
and async modes consistently outperform the BaM baseline across
all configurations. When only one queue pair is used, the AGILE
async mode provides only marginal speedup over the AGILE sync
mode. This phenomenon arises because the number of available
SQEs is too small to support all the requests issued in an epoch.
As a result, in the prefetch stage, the threads must wait until the
AGILE service receives completions from the SSD and recycles
SQEs. Consequently, this waiting degrades the asynchronous mode,
causing it to exhibit a similar behavior to the synchronous mode
in AGILE. As the number of queue pairs increases, more SQEs
are available for each epoch. This reduces contention during the
prefetch stage and allows the prefetch stage to proceed without
stalls. Therefore, the speedup of AGILE async over the synchronous
mode becomes more significant.

Lastly, we evaluate the impact of software cache size on the
DLRM inference using DLRM Config-1 and a batch size of 2048.

SC ’25, November 16-21, 2025, St Louis, MO, USA

We sweep the software cache size from 1 MB to 2 GB and com-
pare the speedup of AGILE against the BaM baseline. Figure 10
illustrates the changes in the speedup under different software
cache sizes. The AGILE sync mode consistently outperforms BaM
across all cache sizes, achieving a peak speedup of 1.48x at 256
MB software cache size. In contrast, AGILE async mode initially
lags behind both the BaM baseline and the AGILE sync mode when
the software cache size is small. However, the AGILE async mode
surpasses the synchronous mode after the software cache reaches
a certain threshold, around 64 MB. This behavior stems from the
software cache contention. When the software cache is too small,
each epoch may access more data that cannot fit in the software
cache size. In this case, the prefetch stage in AGILE async will not
only wait for available cache lines to make new requests but also
evict the previously requested data intended for the next epoch.
Therefore, when that data is needed in the next epoch, it has already
been evicted, and additional requests become necessary during the
computation phase. The delays in the prefetch stage degrade the
asynchronous mode to behave more like the synchronous version,
and the extra requests during the computation phase make the per-
formance worse. As the software cache size keeps increasing, more
cache lines are available to support concurrent prefetching without
evictions. This allows the prefetch stage to complete soon after the
commands are issued. Therefore, the data movement time can be
hidden by the computation again, exhibiting consistent speedup
over the synchronous mode again. These results indicate that the
asynchronous mode does not always outperform the synchronous
one because an improper software cache size will cause stalls and
introduce extra NVMe commands. Therefore, when applying asyn-
chronous mode in real-world applications, it is essential to estimate
both the capacity of the software cache size and the data access
demands per epoch to fully leverage the benefits of asynchronous
mode.

B BaM AGILE (sync) M AGILE (async)
- 1.8 173
[T 1.63
= £16 1.55 150
< 1.48

E S 1a0 10 18 140
5 I 14 132 1310 132 1.35
z L7 121
2=, 1.2
> @©
S @
]
o 21
Q
v}

0.8

1 2 4 8 16 32 64 128 256 512 1024 2048
Software Cache Size (MB)

Figure 10: Speedup comparison of AGILE (async and sync
modes) and BaM under varying software cache sizes in DLRM
inference.

4.5 Evaluate AGILE API overhead on graph
applications

The overhead resulting from the implementation is also an im-
portant factor that influences overall performance. We evaluate
the AGILE’s API overhead covering both the software cache ac-
cess and request issuing against BaM on two graph applications:
Breadth-First Search (BFS) and sparse matrix vector multiplication
(SpMV). The execution time for both BFS and SpMV is dominated

1037

Zhuoping Yang et al.

by data movement due to their irregular access patterns and low
arithmetic intensity [6, 13], making them appropriate benchmarks
for assessing API-level overhead. In our experiments, we imple-
ment the baseline versions of BFS and SpMV using BaM and AGILE
without any application-level optimization, which ensures that the
observed performance differences are attributed solely to the un-
derlying software infrastructure, including the API overhead, cache
access behavior, and request issuing & completion polling mecha-
nism. We use GAP Benchmark Suite [55] to generate the uniform
random graphs and Kronecker graphs to emulate realistic graphs.
All graph structures and weights (if applicable) are stored in the
compressed sparse row (CSR) format.

To measure the API overhead, we conduct the following three-

step experiment:

(1) We first measure the execution times of the application ker-
nels without using BaM or AGILE, and the graph data is
directly stored inside HBM and accessed using the native
CUDA APLI. (Kernel time)

(2) Then, we integrate BaM and AGILE into the application
kernels and measure the total runtime, which includes the
data transfer time and the overhead from both software cache
access and NVMe command issuing. (I/O API time)

(3) Finally, to obtain the overhead in software cache access, we
preload all graph data into the software cache before kernel
execution, eliminating the NVMe requests during runtime.

(Cache API time)
M Kernel M Cache API I/O API
128
32

8
’ I I 1
HEENEENR

BaM AGILE BaM AGILE BaM AGILE BaM AGILE
BFS-K BFS-U SpMV-K SpMV-U

Time Breakdown
Normalized to Kernel

Graph Applications

Figure 11: Execution time breakdown of BaM and AGILE
across various graph applications.

Figure 11 illustrates the execution time breakdown of BFS and
SpMV using different graph types, where -K’ denotes the Kronecker
graphs (K-graph) with skewed degree distribution, and ‘-U’ denotes
uniform random graphs (U-graph) with regular structures. The
bars are segmented into kernel execution, cache API, and I/O API
time. All measured execution times are normalized to the kernel
runtime. Across all graph types, AGILE consistently achieves lower
execution time compared with BaM by effectively reducing both
the cache API and I/O API overheads. For BFS, AGILE reduces the
software cache overhead by 2.27x on U-graph and 1.93x on K-graph.
and cuts the I/O API overhead by 1.16x and 1.86X, respectively. For
SpMV, AGILE achieves even greater reductions — 2.11X and 3.17x
in software cache overhead, and 1.06Xx and 2.85% in I/O overhead
on U-graph and K-graph, respectively. These results underscore
AGILE’s efficiency in handling memory-intensive workloads by
minimizing the overhead from the API implementation regardless
of graph structure.

AGILE: Lightweight and Efficient Asynchronous GPU-SSD Integration

4.6 Evaluate AGILE per thread register usage
across CUDA kernels

To further evaluate AGILE’s efficiency on GPU resources, we ex-
amine its per-thread register usage across different CUDA kernels.
Since register usage directly affects warp occupancy and scheduling
flexibility, optimizing it is crucial on GPUs. Figure 12 depicts the
number of registers used per thread in different CUDA kernels im-
plemented using BaM or AGILE. We do not impose any constraints
to limit the register usage, and both BaM and AGILE use identical
kernel implementations for fair comparison.

Compared to BaM, AGILE achieves a reduction in per-thread
register by 1.04%, 1.22%, and 1.32X in Vector Mean, BFS, and SpMV
kernels, respectively. This improvement stems from the efficient
implementation of AGILE and the offloading of the CQ polling logic
to the dedicated AGILE service kernel, which alleviates pressure
on application kernels and enables more efficient register utiliza-
tion. Moreover, the AGILE service kernel is lightweight, which
consumes 37 registers per thread and can assist multiple CUDA
kernels simultaneously.

80 B BaM AGILE

= 56 54 56 74 56
Lo 46
‘b 40
()
& 20
0

Vector Mean BFS SpMV
CUDA Kernels
Figure 12: Per-thread register usage comparison between
BaM and AGILE across various CUDA kernels.

5 Discussion

While AGILE demonstrates significant performance improvement
over existing work and exhibits strong scalability with multiple
SSDs, several opportunities remain for extending AGILE to broader
and more complex system architectures.

First, extending the software cache hierarchy to incorporate
CPU DRAM as an additional tier is a natural and well-motivated
enhancement, as demonstrated in prior work [7, 21, 29]. AGILE is
designed with the flexibility to support such an extension. In its
current implementation, AGILE includes reserved APIs that enable
integration of CPU DRAM as an additional level of the software-
managed cache, complementing the existing GPU HBM cache. We
will optimize and incorporate this functionality in our open-sourced
GitHub repository soon.

Second, AGILE currently targets a single-GPU with multiple
SSDs scenario, but AGILE has all the capabilities to be extended
to support multiple GPUs with multiple SSDs. To simply share
one SSD among GPUs, different I/O queue pairs of the target SSD
can work independently and be assigned to different GPUs. It only
requires some modifications to the Host APIs, while the AGILE
service and interfaces on the CUDA kernel do not need any change.
Allowing one GPU to issue peer-to-peer data transfers between
another GPU and SSDs or populating data from one GPU directly
to another GPU is also doable if the GPU knows the PCle BARs of
the other GPUs. However, it may require further investigation and
optimization to handle data transfer and synchronization efficiently
without performance degradation. In a multi-GPU system, enabling

1038

SC ’25, November 16-21, 2025, St Louis, MO, USA

one GPU to view other GPUs’ HBM as a remote cache and leverage
NVLink to transfer cached data may also be worth investigating.
This additional cache level in HBMs (shared among GPUs) needs
further study on the cache coherency among GPUs, which involves
dealing with the cache line metadata and analyzing its performance
benefits.

Third, extending AGILE to support more heterogeneous systems
with accelerators such as FPGAs could provide more performance
gains on diverse workloads with various computation and IO char-
acteristics. For example, by leveraging the FPGA’s flexibility and
advantages in network processing, FpgaNIC [61] develops a GPU-
oriented SmartNIC on FPGA to accelerate a broad range of dis-
tributed applications on distributed GPUs. Besides, FPGA exhibits
good energy efficiency as hardware accelerators [64, 67, 69, 70],
and is a good fit for real-time systems, where determinism is criti-
cal [16, 23, 24]. Collaboration between FPGAs and GPUs may offer
both high throughput and lower energy consumption while meet-
ing stringent deadline requirements. Such an extension, however,
introduces new challenges in coordinating multiple devices and
requires more sophisticated system designs. We leave this extension
to future versions of AGILE.

Fourth, AGILE may also enable new research in compiler-level
optimizations. For applications involving multiple data communi-
cations and computations within a single kernel, the programmers
need to explore the overlap opportunity manually. While currently
AGILE functions as an asynchronous I/O library, it can be extended
with compiler support to automatically analyze dependencies and
perform code transformations. Existing research works have ex-
plored similar optimizations. For example, the compiler identifies
the data dependency and reorders instructions for better overlap-
ping [11, 68]. AGILE serves as a foundational first step toward
that goal of developing a compiler that enables static dependency
analysis to automatically explore overlapping opportunities.

Fifth, supporting AGILE in virtualized environments, such as
virtual machines or Docker containers, is important for improving
portability, scalability, and ease of deployment in shared computing
infrastructures. However, this requires further development and
investigation into the associated performance implications, partic-
ularly with respect to I/O virtualization, device passthrough, and
potential overhead introduced by the virtualization layer.

6 Conclusion

In this paper, we propose AGILE, a lightweight and efficient asyn-
chronous library for GPU-SSD integration. AGILE is the first work
that enables GPU threads to issue NVMe commands asynchronously
and allows users to customize software cache policy. AGILE enables
overlapping at the thread level and achieves up to 1.88x reduction
in execution time by hiding data transfer with computation. AG-
ILE exhibits up to 1.75x improvement on DLRMs and shows 3.12x
and 2.85x API overhead reduction in software cache and NVMe
IO requests compared with the state-of-the-art GPU-centric work,
BaM [48]. AGILE is also lightweight and consumes up to 1.32X
fewer registers in various CUDA kernels.

ACKNOWLEDGEMENTS - This work is supported in part by
Brown University New Faculty Start-up Grant, and NSF awards
#2213701, #2217003, #2328972, #2511445, #2536952.

SC ’25, November 16-21, 2025, St Louis, MO, USA

References

(1]

A

[9

=

[10

[11]

=
)

[16

[17

[18]

[19

[20

[21]

[22

[23]

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

Tyler Allen and Rong Ge. 2021. In-depth analyses of unified virtual memory sys-
tem for GPU accelerated computing. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis. 1-15.
Jonghyun Bae, Jongsung Lee, Yunho Jin, Sam Son, Shine Kim, Hakbeom Jang,
Tae Jun Ham, and Jae W Lee. 2021. {FlashNeuron}:{SSD-Enabled}{Large-
Batch} training of very deep neural networks. In 19th USENIX Conference on File
and Storage Technologies (FAST 21). 387-401.

Shai Bergman, Tanya Brokhman, Tzachi Cohen, and Mark Silberstein. 2019. SPIN:
Seamless operating system integration of peer-to-peer DMA between SSDs and
GPUs. ACM Transactions on Computer Systems (TOCS) 36, 2 (2019), 1-26.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng,
Honghui Ding, Kai Dong, Qiushi Du, Zhe Fu, et al. 2024. Deepseek llm: Scaling
open-source language models with longtermism. arXiv preprint arXiv:2401.02954
(2024).

Aydin Bulug¢ and Kamesh Madduri. 2011. Parallel breadth-first search on dis-
tributed memory systems. In Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis. 1-12.

Chia-Hao Chang, Jihoon Han, Anand Sivasubramaniam, Vikram
Sharma Mailthody, Zaid Qureshi, and Wen-Mei Hwu. 2024. Gmt: Gpu
orchestrated memory tiering for the big data era. In Proceedings of the 29th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 3. 464-478.

Chang Chen, Xiuhong Li, Qianchao Zhu, Jiangfei Duan, Peng Sun, Xingcheng
Zhang, and Chao Yang. 2024. Centauri: Enabling efficient scheduling for
communication-computation overlap in large model training via communication
partitioning. In Proceedings of the 29th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, Volume 3.
178-191.

Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi
Muthukrishnan. 2015. One trillion edges: Graph processing at facebook-scale.
Proceedings of the VLDB Endowment 8, 12 (2015), 1804-1815.

Fernando J Corbato. 1968. A paging experiment with the multics system. Mas-
sachusetts Institute of Technology.

Neal C Crago, Sana Damani, Karthikeyan Sankaralingam, and Stephen W Keckler.
2024. Wasp: Exploiting gpu pipeline parallelism with hardware-accelerated
automatic warp specialization. In 2024 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 1-16.

Criteo Al Lab. 2025. Download Criteo 1TB Click Logs dataset - Criteo Al Lab.
https://ailab.criteo.com/download-criteo- 1tb-click-logs-dataset/

John D Davis and Eric S Chung. 2012. SpMV: A memory-bound application on
the GPU stuck between a rock and a hard place. Microsoft Research Silicon Valley,
Technical Report14 September 2012 (2012).

Debendra Das Sharma and Ishwar Agarwal. 2023. CXL_3.0_white-
paper_FINAL. https://computeexpresslink.org/wp-content/uploads/2023/12/
CXL_3.0_white-paper_FINAL.pdf

Dell. 2021. Dell Enterprise Agnostic NVMe Drive Technical Specifications.
https://dl.dell.com/manuals/all-products/esuprt_data_center_infra_int/esuprt_
data_center_infra_storage_adapters/dell-poweredge-exp-fsh-nvme-pcie-
ssd_Users-Guide7_en-us.pdf

Peiyan Dong, Jinming Zhuang, Zhuoping Yang, Shixin Ji, Yanyu Li, Dongkuan Xu,
Heng Huang, Jingtong Hu, Alex K Jones, Yiyu Shi, et al. 2024. EQ-ViT: Algorithm-
hardware co-design for end-to-end acceleration of real-time vision transformer
inference on Versal ACAP architecture. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 43, 11 (2024), 3949-3960.

Gil Einziger, Roy Friedman, and Ben Manes. 2017. Tinylfu: A highly efficient
cache admission policy. ACM Transactions on Storage (ToS) 13, 4 (2017), 1-31.
Eran Gal and Sivan Toledo. 2005. Algorithms and data structures for flash
memories. ACM Computing Surveys (CSUR) 37, 2 (2005), 138-163.

Amir Gholami, Zhewei Yao, Sehoon Kim, Coleman Hooper, Michael W Mahoney,
and Kurt Keutzer. 2024. Al and memory wall. IEEE Micro (2024).

Pieter Hijma, Stijn Heldens, Alessio Sclocco, Ben Van Werkhoven, and Henri E
Bal. 2023. Optimization techniques for GPU programming. Comput. Surveys 55,
11 (2023), 1-81.

Jeongmin Hong, Sungjun Cho, Geonwoo Park, Wonhyuk Yang, Young-Ho Gong,
and Gwangsun Kim. 2024. Bandwidth-effective dram cache for gpu s with
storage-class memory. In 2024 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE, 139-155.

Guyue Huang, Yang Bai, Liu Liu, Yuke Wang, Bei Yu, Yufei Ding, and Yuan Xie.
2023. Alcop: Automatic load-compute pipelining in deep learning compiler for
ai-gpus. Proceedings of Machine Learning and Systems 5 (2023), 680-694.

Shixin Ji, Xingzhen Chen, Jinming Zhuang, Wei Zhang, Zhuoping Yang, Sarah
Schultz, Yukai Song, Jingtong Hu, Alex Jones, Zheng Dong, and Peipei Zhou.

1039

Zhuoping Yang et al.

2025. ART: Customizing Accelerators for DNN-Enabled Real-Time Safety-Critical
Systems. In Proceedings of the 2025 ACM Great Lakes Symposium on VLSI (GLSVLSI
25).

Shixin Ji, Zhuoping Yang, Xingzhen Chen, Wei Zhang, Jinming Zhuang, Alex K
Jones, Zheng Dong, and Peipei Zhou. 2025. CLARE: Deterministic Cycle-Level
Accelerator on REconfigurable platforms in DNN-Enabled Real-Time Safety-
Critical Systems. In The 46th IEEE Real-Time Systems Symposium, 2025 (RTSS 2025)
(RTSS ’25).

Diya Joseph, Juan Luis Aragén, Joan-Manuel Parcerisa, and Antonio Gonzalez.
2024. Wasp: Warp scheduling to mimic prefetching in graphics workloads. arXiv
preprint arXiv:2404.06156 (2024).

Mark] Kilgard and Jeff Bolz. 2012. GPU-accelerated path rendering. ACM
Transactions on Graphics (TOG) 31, 6 (2012), 1-10.

Gyusun Lee, Seokha Shin, Wonsuk Song, Tae Jun Ham, Jae W Lee, and Jinkyu
Jeong. 2019. Asynchronous {I/O} stack: A low-latency kernel {I/O} stack
for {Ultra-Low} latency {SSDs}. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19). 603-616.

Ruihao Li, Sanjana Yadav, Qinzhe Wu, Krishna Kavi, Gayatri Mehta, Neeraja J
Yadwadkar, and Lizy K John. 2023. Performance Implications of Async Mem-
cpy and UVM: A Tale of Two Data Transfer Modes. In 2023 IEEE International
Symposium on Workload Characterization (IISWC). IEEE, 115-127.

Haikun Liu, Yujie Chen, Xiaofei Liao, Hai Jin, Bingsheng He, Long Zheng, and Ren-
tong Guo. 2017. Hardware/software cooperative caching for hybrid DRAM/NVM
memory architectures. In Proceedings of the International Conference on Super-
computing. 1-10.

Matthieu Tardy and Carter Edwards. 2020. Controlling Data Move-
ment to Boost Performance on the NVIDIA Ampere Architecture.
https://developer.nvidia.com/blog/controlling-data-movement-to-boost-
performance-on-ampere-architecture/

Avinash Maurya, Jie Ye, M Mustafa Rafique, Franck Cappello, and Bogdan Nicolae.
2024. Breaking the memory wall: A study of i/o patterns and gpu memory utiliza-
tion for hybrid cpu-gpu offloaded optimizers. In Proceedings of the 14th Workshop
on Al and Scientific Computing at Scale using Flexible Computing Infrastructures.
9-16.

Microsoft. 2025. DeepNVMe. https://www.deepspeed.ai/tutorials/deepnvme/
Sparsh Mittal and Shraiysh Vaishay. 2019. A survey of techniques for optimizing
deep learning on GPUs. Journal of Systems Architecture 99 (2019), 101635.
Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-
Jean Wu, Alisson G Azzolini, et al. 2019. Deep learning recommendation model
for personalization and recommendation systems. arXiv preprint arXiv:1906.00091
(2019).

Giovanni Neglia, Damiano Carra, and Pietro Michiardi. 2018. Cache policies for
linear utility maximization. IEEE/ACM Transactions on Networking 26, 1 (2018),
302-313.

Nvidia. 2025. 1. Introduction — PTX ISA 8.8 documentation. https://docs.nvidia.
com/cuda/parallel-thread-execution/

Nvidia. 2025. cuBLAS | NVIDIA Developer. https://developer.nvidia.com/cublas
Nvidia. 2025. CUDA C++ Programming Guide. https://docs.nvidia.com/cuda/
pdf/CUDA_C_Programming Guide.pdf

Nvidia. 2025. cuda:memcpy_async — libcudacxx 3.1 documentation.
https://nvidia.github.io/cccl/libcudacxx/extended_api/asynchronous_
operations/memcpy_async.html?utm_source=ainews&utm_medium=email&
utm_campaign=ainews-a-quiet-weekend

Nvidia. 2019. GPUDirect Storage: A Direct Path Between Storage and GPU
Memory | NVIDIA Technical Blog. https://developer.nvidia.com/blog/gpudirect-
storage/

Nvidia. 2025. NVIDIA Ampere GPU Architecture Tuning Guide. https://docs.
nvidia.com/cuda/ampere-tuning- guide/index.html

Nvidia. 2025. NVIDIA/gdrcopy: A fast GPU memory copy library based on
NVIDIA GPUDirect RDMA technology. https://github.com/NVIDIA/gdrcopy
Nvidia. 2025. RTX 5000 Ada Generation Graphics Card | NVIDIA. https://www.
nvidia.com/en-us/design-visualization/rtx-5000/

Nvidia. 2013. Unified Memory in CUDA 6 | NVIDIA Technical Blog. https:
//developer.nvidia.com/blog/unified-memory-in-cuda-6/

Nvidia. 2018. Using CUDA Warp-Level Primitives | NVIDIA Technical Blog.
https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/

NVM Express. 2025. NVM Express. https://nvmexpress.org/

Stéfani Pires, Adriana Ribeiro, and Leobino N Sampaio. 2024. On learning suitable
caching policies for in-network caching. IEEE Transactions on Machine Learning
in Communications and Networking (2024).

Zaid Qureshi, Vikram Sharma Mailthody, Isaac Gelado, Seungwon Min, Amna
Masood, Jeongmin Park, Jinjun Xiong, Chris] Newburn, Dmitri Vainbrand, I-Hsin
Chung, et al. 2023. GPU-initiated on-demand high-throughput storage access
in the BaM system architecture. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems, Volume 2. 325-339.

https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/
https://computeexpresslink.org/wp-content/uploads/2023/12/CXL_3.0_white-paper_FINAL.pdf
https://computeexpresslink.org/wp-content/uploads/2023/12/CXL_3.0_white-paper_FINAL.pdf
https://dl.dell.com/manuals/all-products/esuprt_data_center_infra_int/esuprt_data_center_infra_storage_adapters/dell-poweredge-exp-fsh-nvme-pcie-ssd_Users-Guide7_en-us.pdf
https://dl.dell.com/manuals/all-products/esuprt_data_center_infra_int/esuprt_data_center_infra_storage_adapters/dell-poweredge-exp-fsh-nvme-pcie-ssd_Users-Guide7_en-us.pdf
https://dl.dell.com/manuals/all-products/esuprt_data_center_infra_int/esuprt_data_center_infra_storage_adapters/dell-poweredge-exp-fsh-nvme-pcie-ssd_Users-Guide7_en-us.pdf
https://developer.nvidia.com/blog/controlling-data-movement-to-boost-performance-on-ampere-architecture/
https://developer.nvidia.com/blog/controlling-data-movement-to-boost-performance-on-ampere-architecture/
https://www.deepspeed.ai/tutorials/deepnvme/
https://docs.nvidia.com/cuda/parallel-thread-execution/
https://docs.nvidia.com/cuda/parallel-thread-execution/
https://developer.nvidia.com/cublas
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://nvidia.github.io/cccl/libcudacxx/extended_api/asynchronous_operations/memcpy_async.html?utm_source=ainews&utm_medium=email&utm_campaign=ainews-a-quiet-weekend
https://nvidia.github.io/cccl/libcudacxx/extended_api/asynchronous_operations/memcpy_async.html?utm_source=ainews&utm_medium=email&utm_campaign=ainews-a-quiet-weekend
https://nvidia.github.io/cccl/libcudacxx/extended_api/asynchronous_operations/memcpy_async.html?utm_source=ainews&utm_medium=email&utm_campaign=ainews-a-quiet-weekend
https://developer.nvidia.com/blog/gpudirect-storage/
https://developer.nvidia.com/blog/gpudirect-storage/
https://docs.nvidia.com/cuda/ampere-tuning-guide/index.html
https://docs.nvidia.com/cuda/ampere-tuning-guide/index.html
https://github.com/NVIDIA/gdrcopy
https://www.nvidia.com/en-us/design-visualization/rtx-5000/
https://www.nvidia.com/en-us/design-visualization/rtx-5000/
https://developer.nvidia.com/blog/unified-memory-in-cuda-6/
https://developer.nvidia.com/blog/unified-memory-in-cuda-6/
https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/
https://nvmexpress.org/

AGILE: Lightweight and Efficient Asynchronous GPU-SSD Integration

[49] Mohaimenul Azam Khan Raiaan, Md Saddam Hossain Mukta, Kaniz Fatema,
Nur Mohammad Fahad, Sadman Sakib, Most Marufatul Jannat Mim, Jubaer Ah-
mad, Mohammed Eunus Ali, and Sami Azam. 2024. A review on large Language
Models: Architectures, applications, taxonomies, open issues and challenges.
IEEE Access (2024).

[50] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong

He. 2021. Zero-infinity: Breaking the gpu memory wall for extreme scale deep

learning. In Proceedings of the international conference for high performance com-

puting, networking, storage and analysis. 1-14.

Shaina Raza and Chen Ding. 2019. Progress in context-aware recommender

systems—An overview. Computer Science Review 31 (2019), 84-97.

[52] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase,
Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He. 2021. {Zero-offload}:
Democratizing {billion-scale} model training. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21). 551-564.

[53] Xiaowei Ren and Mieszko Lis. 2021. Chopin: Scalable graphics rendering in

multi-gpu systems via parallel image composition. In 2021 IEEE International

Symposium on High-Performance Computer Architecture (HPCA). IEEE, 709-722.

Samsung. 2025. Samsung 990 PRO PCle 4.0 SSD | Samsung Semiconductor Global.

https://semiconductor.samsung.com/consumer-storage/internal-ssd/990-pro/

[55] Scott Beamer. 2024. sbeamer/gapbs: GAP Benchmark Suite. https://github.com/

sbeamer/gapbs

Paul Sweazey and Alan Jay Smith. 1986. A class of compatible cache consistency

protocols and their support by the IEEE futurebus. ACM SIGARCH Computer

Architecture News 14, 2 (1986), 414-423.

[57] Tom’s Hardware. 2021. Samsung 980 Pro M.2 NVMe SSD Review: Redefining
Gen4 Performance | Tom’s Hardware. https://www.tomshardware.com/reviews/
samsung-980-pro-m-2-nvme-ssd-review

[51

[54

[56

[58] Pengyu Wang, Jing Wang, Chao Li, Jianzong Wang, Haojin Zhu, and Minyi
Guo. 2021. Grus: Toward unified-memory-efficient high-performance graph
processing on gpu. ACM Transactions on Architecture and Code Optimization
(TACO) 18, 2 (2021), 1-25.

[59] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and

John D Owens. 2016. Gunrock: A high-performance graph processing library on
the GPU. In Proceedings of the 21st ACM SIGPLAN symposium on principles and
practice of parallel programming. 1-12.

Yang Wang, Jiwu Shu, Guangyan Zhang, Wei Xue, and Weimin Zheng. 2010.

Sopa: Selecting the optimal caching policy adaptively. ACM Transactions on

Storage (TOS) 6, 2 (2010), 1-18.

[61] Zeke Wang, Hongjing Huang, Jie Zhang, Fei Wu, and Gustavo Alonso. 2022.

{FpgaNIC}: An {FPGA-based} versatile 100gb {SmartNIC} for {GPUs}. In 2022

USENIX Annual Technical Conference (USENIX ATC 22). 967-986.

Kun Wu, Jeongmin Brian Park, Xiaofan Zhang, Mert Hidayetoglu, Vikram Sharma

Mailthody, Sitao Huang, Steven Sam Lumetta, and Wen-mei Hwu. 2024. SSDTrain:

An Activation Offloading Framework to SSDs for Faster Large Language Model

Training. arXiv preprint arXiv:2408.10013 (2024).

Shao-Peng Yang, Minjae Kim, Sanghyun Nam, Juhyung Park, Jin-Yong Choi,

Eyee Hyun Nam, Eunji Lee, Sungjin Lee, and Bryan S Kim. 2023. Overcoming

the memory wall with { CXL-Enabled } {SSDs}. In 2023 USENIX Annual Technical

Conference (USENIX ATC 23). 601-617.

[64] Zhuoping Yang, Jinming Zhuang, Jiaqi Yin, Cunxi Yu, Alex K. Jones, and Peipei
Zhou. 2023. AIM: Accelerating Arbitrary-precision Integer Multiplication on
Heterogeneous Reconfigurable Computing Platform Versal ACAP. In ICCAD.

[65] Haoyang Zhang, Yirui Zhou, Yugi Xue, Yiqi Liu, and Jian Huang. 2023. G10:
Enabling an efficient unified gpu memory and storage architecture with smart
tensor migrations. In Proceedings of the 56th Annual IEEE/ACM International
Symposium on Microarchitecture. 395-410.

[60

[62

[63

[66] Yu Zhang, Yuxuan Liang, Jin Zhao, Fubing Mao, Lin Gu, Xiaofei Liao, Hai Jin,
Haikun Liu, Song Guo, Yangqing Zeng, et al. 2022. Egraph: efficient concurrent
GPU-based dynamic graph processing. IEEE Transactions on Knowledge and Data
Engineering 35, 6 (2022), 5823-5836.

[67] Jinming Zhuang, Jason Lau, Hanchen Ye, Zhuoping Yang, Yubo Du, Jack Lo,

Kristof Denolf, Stephen Neuendorffer, Alex Jones, Jingtong Hu, Deming Chen,
Jason Cong, and Peipei Zhou. 2023. CHARM: Composing Heterogeneous AcceleR-
ators for Matrix Multiply on Versal ACAP Architecture. In The 2023 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (FPGA °23). Associa-
tion for Computing Machinery, New York, NY, USA. doi:10.1145/3543622.3573210
Jinming Zhuang, Shaojie Xiang, Hongzheng Chen, Niansong Zhang, Zhuoping
Yang, Tony Mao, Zhiru Zhang, and Peipei Zhou. 2025. ARIES: An Agile MLIR-
Based Compilation Flow for Reconfigurable Devices with Al Engines. In Proceed-
ings of the 2025 ACM/SIGDA International Symposium on Field Programmable Gate
Arrays (Monterey, CA, USA) (FPGA ’25). Association for Computing Machinery,
New York, NY, USA, 92-102. doi:10.1145/3706628.3708870
[69] Jinming Zhuang, Zhuoping Yang, Shixin Ji, Heng Huang, Alex K. Jones, Jingtong
Hu, Yiyu Shi, and Peipei Zhou. 2024. SSR: Spatial Sequential Hybrid Architecture
for Latency Throughput Tradeoff in Transformer Acceleration. In Proceedings
of the 2024 ACM/SIGDA International Symposium on Field Programmable Gate
Arrays (FPGA °24). 55-66.

o
&,

1040

SC ’25, November 16-21, 2025, St Louis, MO, USA

[70] Jinming Zhuang, Zhuoping Yang, and Peipei Zhou. 2023. High Performance, Low
Power Matrix Multiply Design on ACAP: from Architecture, Design Challenges
and DSE Perspectives. In 2023 60th ACM/IEEE Design Automation Conference
(DAC). 1-6. doi:10.1109/DAC56929.2023.10247981

https://semiconductor.samsung.com/consumer-storage/internal-ssd/990-pro/
https://github.com/sbeamer/gapbs
https://github.com/sbeamer/gapbs
https://www.tomshardware.com/reviews/samsung-980-pro-m-2-nvme-ssd-review
https://www.tomshardware.com/reviews/samsung-980-pro-m-2-nvme-ssd-review
https://doi.org/10.1145/3543622.3573210
https://doi.org/10.1145/3706628.3708870
https://doi.org/10.1109/DAC56929.2023.10247981

SC ’25, November 16-21, 2025, St Louis, MO, USA

Zhuoping Yang et al.

Appendix: Artifact Description

A Overview of Contributions and Artifacts

A.1 Paper’s Main Contributions

C; We propose AGILE, enabling GPU to issue NVMe commands
asynchronously. To the best of our knowledge, AGILE is the
first GPU-centric asynchronous IO model.

C2 We implement a robust lock-based asynchronous transac-
tion mechanism, which allows GPU threads to issue NVMe
commands asynchronously without holding any locks. Our
approach efficiently eliminates possible deadlocks and data
hazards.

C3 We integrate a flexible software cache hierarchy in AGILE
to utilize GPU HBM, which allows users to customize their
cache policy and provides a simple interface for increased
usability.

C4 We evaluate AGILE on micro-benchmarking and applica-
tions. The results show that AGILE enables overlapping at
the thread level and achieves 1.88x speedup over a synchro-
nous IO model. Compared with SOTA work BaM on DRLMs,
AGILE achieves up to 1.75X reduction in end-to-end execu-
tion time. In graph applications, AGILE demonstrates lower
API overhead in managing software cache and NVMe IO
requests up to 3.12x and 2.85X, respectively. Furthermore,
AGILE consumes fewer registers and exhibits up to 1.32x
reduction in the usage of registers.

A.2 Computational Artifacts
A1 https://zenodo.org/records/17260393

Artifact ID Contributions Related
Supported Paper Elements

A C1-Cy

Figure 4-12

B Artifact Identification
B.1 Computational Artifact A,

Relation To Contributions

Artifact A; contains the AGILE source code, benchmarking code
for comparison with the baseline BaM, and scripts to reproduce
the results in the paper. The source code supports the paper’s main
contributions C; - C3, and the benchmarking code and scripts
support the main contribution Cy4. Contribution C; and Cy are the
prerequisites for C3 and Cy4. Contribution Cs gives users flexibility
when using AGILE in various application settings. Contribution Cy4
highlights AGILE’s superiority over the SOTA work BAM for the
GPU-centric on-demand high-throughput storage access system.

Expected Results

In the experiments, we implement the same software cache policy
with BaM using the AGILE software cache interface (C3). We evalu-
ate AGILE in various applications and different settings to support
C4 in the following aspects:

(1) AGILE’s asynchronous IO model achieves better performance
on synthetic workloads by overlapping computation and

1041

communication under workloads with various computation-
to-communication (CTC) ratios. (Figure 4)

(2) AGILE exhibits scalable performance in 4KB random read-
/write as the number of requests increases and can leverage
multiple SSDs effectively. (Figure 5 & Figure 6)

(3) AGILE achieves better performance in Deep Learning Rec-
ommendation Models (DLRM) with various settings against
the SOTA GPU-centric system architecture, BaM. (Figure 7 -
Figure 10)

(4) AGILE’s implementation, including the software cache sys-
tem, NVMe queue handling, and lock mechanism, is more
efficient than the SOTA work BaM. (Figure 11)

(5) AGILE requires fewer GPU hardware resources in terms of
per-thread register usage on various CUDA kernels. (Figure
12)

As the hardware settings include GPU and SSD types, NUMA con-
figurations, and PCle configurations may influence the reproduced
results, we will provide our server to the evaluators for reproducing
our experimental results. The evaluators can contact us and request
server access via email: zhuoping_yang@brown.edu.

Expected Reproduction Time (in Minutes)

The estimated time for setting up the environment and compiling
code for both AGILE and BaM is within 30 minutes. The estimated
time for preparing DLRM input data and graph data would take
approximately 360 minutes. Reproducing the experimental results
in Figure 4 - 12 can be finished in 120 minutes.

Artifact Setup (incl. Inputs)

Hardware. AGILE requires an Nvidia GPU and several NVMe SSDs.
The Nvidia GPU and NVMe SSDs are installed in the same server
via PCle. In the experiments, we use an Nvidia RTX 5000 Ada GPU,
a Dell Ent NVMe AGN MU AIC 1.6TB SSD, and two Samsung 990
PRO 1TB SSDs.

Software. AGILE is a CUDA library and requires a modified ver-
sion of GDRCopy (https://github.com/NVIDIA/gdrcopy), which is
included in the artifact.

Datasets / Inputs. The Criteo dataset is used in the DLRM eval-
uations, and the Criteo dataset can be downloaded from https:
//ailab.criteo.com/download-criteo-1tb-click-logs-dataset/. We use
the GAP Benchmark Suite (https://github.com/sbeamer/gapbs) to
generate uniform random graphs and Kronecker graphs.

Installation and Deployment. We use NVIDIA (R) Cuda compilation
tools (release 12.8, V12.8.93) for all experiments. The Nvidia driver
version is 550.54.14. The operating system is Ubuntu 20.04 with a
Linux kernel version of 5.4.0-214-generic. For setting up BaM, please
refer to https://github.com/ZaidQureshi/bam. AGILE’s host code
requires a continuous physical memory region, which is reserved
in /etc/default/grub by adding the GRUB_CMDLINE_LINUX op-
tion. For example, GRUB_CMDLINE_LINUX="memmap=1G\\\$128G"
will reserve 1 GB DRAM memory starting at 128 GB. After chang-
ing /etc/default/grub, executing sudo update-grub and sudo
reboot to apply the modification.

https://zenodo.org/records/17260393
https://github.com/NVIDIA/gdrcopy
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/
https://github.com/sbeamer/gapbs
https://github.com/ZaidQureshi/bam

[NCR

wn

AGILE: Lightweight and Efficient Asynchronous GPU-SSD Integration

Artifact Execution
Before conducting experiments using AGILE, it is necessary to find
the target SSDs and their corresponding PCIe BARs and the BAR

sizes. For example, Listing 2 shows an example of obtaining the
BAR and BAR size for the NVMe SSD device at /dev/nvme@n1.

username@host$ readlink -f /sys/block/nvme@n1
/sys/devices/pci0000:4a/0000:42:02.0/0000:4b:00.0/
nvme/nvme®@/nvmedn1
username@host$ lspci -vvs 4b:
4b:00.0 Non-Volatile memory controller: Samsung
Electronics Co Ltd Device a80c (prog-if 02 [
NVM Express])
Subsystem: Samsung Electronics Co Ltd
Device a801
Control: I/0- Mem+ BusMaster+ SpecCycle-
MemWINV - VGASnoop- ParErr- Stepping-
SERR- FastB2B- DisINTx+
Status: Cap+ 66MHz- UDF- FastB2B- ParErr-
DEVSEL=fast >TAbort- <TAbort- <MAbort-
>SERR- <PERR- INTx-

Latency: 0

Interrupt: pin A routed to IRQ 18

NUMA node: @

Region ©: Memory at 95400000 (64-bit, non-

prefetchable) [size=16K]
Capabilities: <access denied>
Kernel driver in use: nvme
Kernel modules: nvme

(o))

SC ’25, November 16-21, 2025, St Louis, MO, USA

Table 1: Experimental Bash scripts for reproducing results
for Figure 4 - 11.

Figures Corresponding Scripts
Figure 4 run_ctc.sh
Figure 5 rand_read.sh
Figure 6 rand_write.sh
Figure 7 - 10 | run_dlrm.sh & auto_dlrm.sh
Figure 11 run_bfs*.sh & run_spmv*.sh

correctness check via MD5 digest. Then, we can plot the normalized
speedup using the execution time.

For Figure 12, we have added the compilation flag “-w -Xptxas
-v” to the Makefile for both AGILE and BaM. During the compila-
tion process, nvcc will report per-thread register usage for various
CUDA kernels.

0 prefetch_hit: @ prefetch_relaxed_hit: 0
prefetch_relaxed_miss: @ prefetch_issue:
472724 runtime_issue: @ warp_master_wait: 0

issued_read: 472724 issued_write: @ attempt_fail:
367832
BFS time: 0.960216 seconds.

035fbc46fadallbaf426d8408e632aa5 res-bfs.bin

Listing 3: An example output of BFS using AGILE

Listing 2: Obtain SSDs’ BAR and the BAR size

From the output of “readlink -f /sys/block/nvme0n1", the PCle
BAR of the target SSD is 0x95400000 and the BAR size is 16384,
which will be specified in the AGILE host code or the command line
arguments. Then, unbind the default nvme driver for this NVMe
SSD by executing “echo "0000:4b:00.0" | sudo tee /sys/bus/pci/de-
vices/0000:4b:00.0/driver/unbind”. Before executing applications
using AGILE, the modified gdrcopy needs to be installed by ex-
ecuting insmod. sh located at AGILE-SC25-AD/driver/gdrcopy/.
To execute applications using BaM for experimental comparison
purposes, libnvm should be installed according to https://github.
com/ZaidQureshi/bam.

To reproduce the experiments for Figure 4 - 11, we provide sev-
eral scripts (in AGILE-SC25-AD/experiments) that execute AGILE
and BaM automatically and save the output files to . /results for
future analysis. Table 1 shows the matching between the experi-
ments and the scripts.

To reproduce the per-thread register usage for various CUDA
kernels in Figure 12, please compile the DLRM application, BFS,
and SpMV in the “AGILE-SC25-AD/benchmarks” folder for AGILE
and “AGILE-SC25-AD/baseline/bam/benchmarks” folder for BaM
and read the output report from nvcc.

Artifact Analysis (incl. Outputs)

For Figure 4 - 11, we mainly focus on the reported end-to-end
execution time. The example outputs of BFS using AGILE and BaM
are shown in Listing 3 and Listing 4, respectively. The output will
report the number of issued NVMe commands, execution time, and

1042

w N

w

=)

BFS time:
#READ I0s:

1.76495 seconds.

472724 #Accesses:484068261 #Misses
:661416 Miss Rate:0.00136637 #Hits:
483406845 Hit Rate:0.998634 CLSize:4096

AKKXKKKAAKKXKRKRKAAA KRR KR KAA A AR KA XA XA X k)%
Bandwidth: 1.09707e+09 GB/s

035fbc46fadallbaf426d8408e632aa5 gpu-res-bfs.bin

Listing 4: An example output of BFS using BaM

https://github.com/ZaidQureshi/bam
https://github.com/ZaidQureshi/bam

	Abstract
	1 Introduction
	2 Background & Design Challenges
	2.1 Background of NVMe Protocol
	2.2 GPU Threads Scheduling & Asynchronous Data Movement in CUDA
	2.3 Design Challenges in Asynchronous GPU-SSD integration

	3 AGILE Design & Implementation
	3.1 Overview of AGILE System
	3.2 AGILE Service
	3.3 AGILE Request Issuing Mechanism
	3.4 AGILE Software Cache
	3.5 AGILE Abstraction and Software APIs

	4 Evaluation
	4.1 Experimental Setup
	4.2 Comparison between asynchronous I/O and synchronous I/O
	4.3 AGILE 4KB random read and write on multiple SSDs
	4.4 Evaluation on DLRM inference
	4.5 Evaluate AGILE API overhead on graph applications
	4.6 Evaluate AGILE per thread register usage across CUDA kernels

	5 Discussion
	6 Conclusion
	References
	A Overview of Contributions and Artifacts
	A.1 Paper's Main Contributions
	A.2 Computational Artifacts

	B Artifact Identification
	B.1 Computational Artifact A1

