
CHARM: Composing Heterogeneous AcceleRators for Matrix
Multiply on Versal ACAP Architecture

Jinming Zhuang
University of Pittsburgh
jinming.zhuang@pitt.edu

Jason Lau
University of California,

Los Angeles
lau@cs.ucla.edu

Hanchen Ye
University of Illinois at
Urbana-Champaign

hanchen8@illinois.edu

Zhuoping Yang
University of Pittsburgh
zhuoping.yang@pitt.edu

Yubo Du
University of Pittsburgh

yubo.du@pitt.edu

Jack Lo
Advanced Micro

Devices Inc.
jack.lo@amd.com

Kristof Denolf
Advanced Micro

Devices Inc.
kristof.denolf@amd.com

Stephen
Neuendorffer
Advanced Micro

Devices Inc.
stephen.neuendorffer@amd.com

Alex Jones
University of Pittsburgh

akjones@pitt.edu

Jingtong Hu
University of Pittsburgh

jthu@pitt.edu

Deming Chen
University of Illinois at
Urbana-Champaign
dchen@illinois.edu

Jason Cong
University of California,

Los Angeles
cong@cs.ucla.edu

Peipei Zhou
University of Pittsburgh
peipei.zhou@pitt.edu

ABSTRACT
Dense matrix multiply (MM) serves as one of the most heavily
used kernels in deep learning applications. To cope with the high
computation demands of these applications, heterogeneous archi-
tectures featuring both FPGA and dedicated ASIC accelerators have
emerged as promising platforms. For example, the AMD/Xilinx
Versal ACAP architecture combines general-purpose CPU cores
and programmable logic with AI Engine processors optimized for
AI/ML. An array of 400 AI Engine processors executing at 1 GHz
can provide up to 6.4 TFLOPs performance for 32-bit floating-point
(fp32) data. However, machine learning models often contain both
large and small MM operations. While large MM operations can
be parallelized efficiently across many cores, small MM operations
typically cannot. We observe that executing some small MM lay-
ers from the BERT natural language processing model on a large,
monolithic MM accelerator in Versal ACAP achieved less than 5%
of the theoretical peak performance. Therefore, one key question
arises: How can we design accelerators to fully use the abundant
computation resources under limited communication bandwidth for
end-to-end applications with multiple MM layers of diverse sizes?

We identify the biggest system throughput bottleneck result-
ing from the mismatch of massive computation resources of one
monolithic accelerator and the various MM layers of small sizes in
the application. To resolve this problem, we propose the CHARM
framework to compose multiple diverse MM accelerator archi-
tectures working concurrently towards different layers within one
application. CHARM includes analytical models which guide de-
sign space exploration to determine accelerator partitions and layer
scheduling. To facilitate the system designs, CHARM automatically
generates code, enabling thorough onboard design verification. We
deploy the CHARM framework on four different deep learning

This work is licensed under a Creative Commons Attribution
International 4.0 License.

FPGA ’23, February 12–14, 2023, Monterey, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9417-8/23/02.
https://doi.org/10.1145/3543622.3573210

applications, including BERT, ViT, NCF, MLP, on the AMD/Xilinx
Versal ACAP VCK190 evaluation board. Our experiments show
that we achieve 1.46 TFLOPs, 1.61 TFLOPs, 1.74 TFLOPs, and 2.94
TFLOPs inference throughput for BERT, ViT, NCF, MLP, respec-
tively, which obtain 5.29×, 32.51×, 1.00× and 1.00× throughput
gains compared to one monolithic accelerator.

CCS CONCEPTS
• Computer systems organization→ Heterogeneous (hybrid)
systems; • Hardware→ Hardware-software codesign.

KEYWORDS
Heterogeneous Architecture, Domain-Specific Accelerator, Versal
ACAP, Mapping Framework, Matrix-Multiply, Deep Learning

ACM Reference Format:
Jinming Zhuang, Jason Lau, Hanchen Ye, Zhuoping Yang, Yubo Du, Jack
Lo, Kristof Denolf, Stephen Neuendorffer, Alex Jones, Jingtong Hu, Deming
Chen, Jason Cong, Peipei Zhou. 2023. CHARM: Composing Heterogeneous
Accelerators for Matrix Multiply on Versal ACAP Architecture. In Proceed-
ings of the 2023 ACM/SIGDA International Symposium on Field Programmable
Gate Arrays (FPGA ’23), February 12–14, 2023, Monterey, CA, USA. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3543622.3573210

1 INTRODUCTION
Dense matrix multiply (MM) serves as one of the most heavily used
kernels in many deep learning workloads, including BERT [1] for
natural language processing, NCF [2] for recommendations, ViT [3]
for vision classification, and MLP [4] for multilayer perceptron
classification or regression. According to profiling results from
Google [5], dense matrix multiply tasks occupied 90% of Neural
Network (NN) inference workload in Google’s data center in 2017.
The increasing complexity of these applications leads to extreme
demands for computation and data movement.

According to [6, 7, 8, 9], the off-chip bandwidth has been a bot-
tleneck for both the performance and energy efficiency of a system
and a common trend on current platforms is that the off-chip band-
width does not scale as fast as the computation resources. Therefore,

153

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3543622.3573210
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543622.3573210&domain=pdf&date_stamp=2023-02-12

FPGA ’23, February 12–14, 2023, Monterey, CA, USA Jinming Zhuang et al.

One Monolithic Acc 8 Duplicated Accs

10-1

104

103

102

101

100

GFLOPs

64 128 256 512 1K 1.5K 2K 3K

Square Matrix Size

X

X

X

X

A

D
C

B

Large data reuse

Compared to A, less data reuse due
to resource partition

2821.14 GFLOPs

692.96 GFLOPs
7.20 GFLOPs

0.41 GFLOPs

Shape mismatch, waste on
both computation and bandwidth

Compared to B, less waste
as the size of Accs decreases

Figure 1: Throughput of square MM under different sizes.

One Monolithic Acc 0123 54 6 7

Two Diverse Accs
6 7

0 41 2 3 5 Acc0

Acc1

Region B

Region better than C

Region A

Region A

Figure 2: Execution timeline of one monolithic MM design
vs. two diverse MM accs design for BERT on VCK190.

the first research question arises: How to sustain the faster scaling
computation with the slower scaling off-chip bandwidth?

A common solution is to increase data reuse by allocating more
on-chip storage within an accelerator (acc). As shown in asymptotic
analysis in [9], the total off-chip communication volume in MM
scales as O(1√

𝑀
) where M is the on-chip tile size. If we increase the

tile size, we can reduce the total communication volume, therefore
reducing the pressure on the off-chip bandwidth.

In this work, we target on the AMD/Xilinx Versal ACAP ar-
chitecture [10], which combines general-purpose CPU cores and
programmable logic (PL) with AI Engine processors (AIE) optimized
for AI/ML computation. For example, we implemented an MM ac-
celerator on an AMD/Xilinx VCK190 board using 384 AIEs and over
80% on-chip URAM and BRAM resources. The red line in Figure 1
illustrates the performance of this accelerator. This design operates
on a native tile size of 1536×128×1024 and achieves 2.8 TFLOPs
throughput when carrying a tiled execution of a large square MM
(point A). However, when simply mapping different sizes of MM
to such a design, the performance decreases significantly as the
square MM size drops below 512, since each tile is padded to the
native tile size of the accelerator. For instance, at point B, the per-
formance of such a monolithic design goes to 0.41 GFLOPs, which
is 6880× lower than point A. Although padding is a common and
simple approach to implementing small MM operations on a large
accelerator, padding can waste both computation and bandwidth.

An alternative to padding is implementing multiple accelerators
with smaller native tile sizes, potentially executing different tasks on
each accelerator in parallel [11]. We apply this approach using eight
independent accelerators with a native tile size of 256×128×256,
illustrated by the blue dash line in Figure 1. For small square MM
operations with size 64, this approach achieves 7.2 GFLOPS at point
C, approximately 17× speedup compared to point B.

However, the smaller accelerator size also means less data reuse
for large MM, with total throughput almost saturation when the

operation size is larger than 256. When the MM size is 3072 (point
D), the total throughput from eight duplicate accs is 4.08× smaller
than point A in one monolithic design.

These experiments expose two conflicting design goals. Firstly,
we want to implement large MM operations with sufficient data
reuse to achieve the highest possible performance on the devices.
Secondly, we want to implement small MM operations while min-
imizing computation and communication overheads. Neither of
these simple designs seems able to achieve these design goals si-
multaneously. Therefore, the second research question arises: How
to trade-off between the two design goals for real-world, end-to-end
applications where MM layers with large and small sizes coexist?

To illustrate how these conflicting design goals can affect the
performance of practical machine learning models, we consider
BERT [1] as a representative workload containing MM layers with
both large and small sizes. In a transformer layer of BERT, there are a
total of 8 types of MM kernels where Kernels 0-5 are large MMs and
Kernels 6 and 7 are batch dots, i.e., small MMs. The detailed shapes
can be referred to Table 5. Take Kernel 5 and Kernel 6 as examples,
Kernel 5 is an MM with the shape 3072×1024×4096, Kernel 6 is a
batch dot with the shape 96×512×512×64, which means there are
96 small independent MMs sized at 512×512×64.

As shown in Figure 2, when using one monolithic MM accelera-
tor, Kernels 0-5 consume 92% of the total BERT MM computation
operations and 12% of the total MM acc time. In contrast, Kernels
6-7 consume 8% of the total operations but take 88% of the total
MM acc time. For Kernels 0-5, they lie in Region A (a region that
performs similarly to Point A in Figure 1), where the throughput of
acc is more than 2082 GFLOPS. For Kernel 6-7, they lie in Region B,
where the throughput of acc is only 23.6 GFLOPS. Given there is
a large portion of acc execution underutilized in the timeline, the
overall MM acc throughput is only 276 GFLOPS. Can we achieve a
design for BERT that lies in region A, i.e., good for large MMs, and
also in a region better than point C, i.e., good for small MMs with
less or no waste computation/bandwidth?

Our answer is “Yes". The key idea is to allocate more portion
of the resources to accs dedicated to computing larger MMs and a
smaller portion of the resources to other accs to compute smaller
MMs at the same time, as shown in Figure 2 where a two-diverse
accs system is illustrated. To achieve our design goals, we need to
solve these new challenges. First, we need to achieve high compu-
tation utilization for every single acc, i.e., use the smaller acc(s) to
reduce the waste for small MMs and use the larger acc(s) to maxi-
mize the data reuse for large MMs. Second, to maximize overall
utilization while maintaining high throughput and low latency, we
need to carefully overlap the execution time for these accs by co-
optimizing workload and resource partitioning. Third, to facilitate
the design space explorations (DSE), we need analytical models
to optimize the overall throughput under resource and bandwidth
constraints. Fourth, to reduce the programming efforts for the
system implementation, we need automatic code generation. Fifth,
to resolve the dependency of the kernels within the application
graph when running multiple accs we need an accelerator runtime
to schedule kernels from different tasks onto the accs.

To answer the research questions, we propose the CHARM archi-
tecture and its corresponding automation framework, the CHARM
framework. Our contributions are summarized below:

154

CHARM: Composing Heterogeneous AcceleRators for Matrix Multiply on Versal ACAP Architecture FPGA ’23, February 12–14, 2023, Monterey, CA, USA

• CHARM Systematical Design Methodology on Versal: To
achieve high computation and communication efficiency of each
acc, in Section 4, we propose a thorough design methodology
on Versal heterogeneous platform. We further provide automatic
CHARM DSE (CDSE) to find the optimized single acc configu-
ration. To the best of our knowledge, this is the first work that
provides a detailed analysis of the systematical data movement
and computation on Versal.
• CHARMArchitecture and Framework: To achieve the design
goals of good performance for MMs with both small and large
sizes in an application, in Section 5, we propose the CHARM
architecture and the CHARM framework to find the optimized
design. In the CHARM framework, there are several modules.
First, on top of CDSE, we propose the CHARM diverse accel-
erator composer (CDAC), which features a sort-based two-step
search algorithm to find an optimized CHARM design in the
polynomial time complexity instead of exponential time com-
plexity. Furthermore, to automate the system implementation,
CHARM automatic code generation (CACG) is proposed to gen-
erate source code files for AIEs, PL, and host CPU. Lastly, the
CHARM runtime system (CRTS) is launched in the host CPU
that schedules different kernels to the accs for optimizing both
task latency and overall system throughput.
• We deploy the CHARM framework to accelerate four applica-
tions on VCK190 in Section 6. Our on-board experiments demon-
strate that CHARM achieves 1.46 TFLOPs, 1.61 TFLOPs, 1.74
TFLOPs, and 2.94 TFLOPs inference throughput for BERT, ViT,
NCF, MLP, respectively, which obtain 5.29×, 32.51×, 1.00×, and
1.00×, throughput gains compared to one monolithic accelerator.
• White-Box Open-Source Tools for Versal.While AMD pro-
vides users a block-box IP for NN applications called DPU [11], we
open-sourced our tools completely as a white-box with a detailed
step-by-step guide to reproduce all of the results presented in this
paper and for the other users to learn and leverage in their end-to-
end systems. (https://github.com/arc-research-lab/CHARM)

2 PRIORWORK
To achieve high throughput and energy efficiency, NN accelerators
usually employ a large number of processing elements (PE) and
share a similar memory hierarchy. That is, while the big bulk of data
is stored in the off-chip memory, there are multiple levels of on-chip
buffers, including the local memory attached to each PE and global
shared memory, to further reduce the costly data movement from/to
off-chip memory. Several works contribute to NN accelerators by
discussing the data reuse opportunities, computation parallelism,
and the choice of dataflow.

However, many of the prior works apply a one-size-fits-all mono-
lithic design that cannot efficiently handle layers with huge dif-
ferences in shapes and sizes (Eyeriss [12, 13], ShiDiannao [14],
NPU [15, 16, 17] and others [18, 19, 20, 21]). AutoSA [22] is a
polyhedral-based compilation framework that generates mono-
lithic systolic array designs for dense matrices. Sextans and Ser-
pens [23, 24] are general-purpose monolithic accelerators for sparse
matrices. [25, 26] analyze layout and pipeline efficiency. Other
works like AMD DPU [11], Mocha [27] explore task-level paral-
lelism by allocating multiple duplicate accs on the device without
specializing each acc. DNNBuilder [28] designs a dedicated acc for

Table 1: Comparison with prior works.

Prior
Works

One
Mono

Multi
Duplicate

Multi
Diverse

Workload
Assignment

Specializa
-tion for Acc

Eyeriss etc.
[12]-[26] ✓ × × × ×

DPU etc.
[11, 27] ✓ ✓ × × ×

DNN Expl.
etc. [28, 29] ✓ ✓ ✓ × ×

Herald [32] ✓ ✓ ✓ ✓ ×
CHARM
(Ours) ✓ ✓ ✓ ✓ ✓

each layer according to the number of operations within the layer.
DNNExplorer [29] enhances DNNBuilder by combining dedicated
accs for the first several layers and a monolithic acc for the rest of
the layers. While it employs multiple accelerators, it lacks a com-
prehensive exploration of workload assignments. TETRIS [30] and
TANGRAM [31] propose multiple dataflow optimizations within
and across the NN layers to improve performance and energy effi-
ciency. Although they offer diverse accelerator designs, they lack
the DSE and workload assignment for high overall throughput. Her-
ald [32] proposes an architecture with multiple diverse accelerators
and explores the workload assignment and resource partition. Still,
they choose several existing acc designs from their candidate pool,
e.g., ShiDiannao [14], NVDLA [33] without doing DSE for each
acc. FPCA [34] and CHARM'12 [35] propose a fully pipelined and
dynamically composable coarse-grained reconfigurable architec-
ture and compose loosely coupled accelerators for different kernels
within an application via permutation network, which costs high
in chip area.

In conclusion, we summarize the differences between our work
and prior works in Table 1. Our work is capable of choosing the de-
sign from one monolithic, multiple duplicates, and multiple diverse
accelerators, and each accelerator is a specialized design considering
the different workload assignments, dataflow, and data parallelism
strategies that are covered by our DSE.

3 VERSAL ACAP ARCHITECTURE OVERVIEW
In this section, we first introduce the system architecture of AMD/
Xilinx Versal ACAP architecture in Section 3.1 and then the memory
model of AIE array in Section 3.2.

3.1 Versal ACAP Architecture
Figure 3 illustrates the overall architecture of the VCK190 [36]
board and highlights the AIE array on the top. The VCK190 board
features (1) the first-generation AIE architecture, which has 8 × 50
1 GHz 7-way VLIW processors supporting vector operations up to
1024 bits [37], (2) ARM processors to run Linux and general-purpose
applications, and (3) PL to design application-specific hardware
with Digital Signal Processors (DSP) available for integration. The
AI engine cores and ARM CPUs can be programmed with C/C++
code, while PL can be programmed using both RTL and C/C++ code
using High-Level Synthesis (HLS) [38, 39, 40, 41, 42, 43]. These three
components are integrated with I/O peripherals, such as PCIe and

155

https://github.com/arc-research-lab/CHARM

FPGA ’23, February 12–14, 2023, Monterey, CA, USA Jinming Zhuang et al.

Processor
System
(ARM)

AIE
Core

Interface

Switch

AIE
Core

Switch

AIE
Core

Switch

AIE
Core

Switch

AIE
Core

Switch

AIE
Core

Switch

Switch

Interface

Switch

Interface

Switch

…

…

…

…

…

…

NOC

DRAM

AI Engine Array

Configuration

Reconfigurable Hardware Instruction-Based Processors

AXI to DDR

Reconfigurable Hardware

Shared Memory

Reconfigurable Hardware

AXI Stream

Programmable Logic
(FPGA)

Figure 3: Versal ACAP architecture.

DRAM controllers, into a heterogeneous SoC with a Network-on-
Chip (NoC). The VCK190 board is equipped with one DDR4-DIMM
off-chip memory with a 25.6 GB/s peak bandwidth.

3.2 AIE Memory Model
Each AIE processor tile contains 32 KB of data and is capable of shar-
ing data with the adjacent AIEs in four directions (AIE↔neighbor
AIE). In addition to local memory shared with adjacent tiles, each
AIE tile also connects to an AXI-Stream (AXIS) switch network,
which enables non-local communication between AIE processors
(AIE↔non-local) and communication with the PL through the
PLIOs in the 39 interface tiles (PL↔AIEs). The VCK190 board
provides 1.2 TB/s (PL↔AIEs) / 0.9 TB/s (AIEs↔PL) bandwidth be-
tween PL and AIEs, which is 46×more than the bandwidth between
DDR4 and PL. The AXIS switches support both circuit-switched
and packet-switched connections between ports. Circuit-switched
connections provide dedicated, deterministic communication and
support broadcast, where data from a single input channel is trans-
mitted tomultiple output channels simultaneously. Packet-switched
connections allow data from an input channel to be dynamically
routed to different destinations based on a destination header at the
start of each packet. This enables data flows to be time-multiplexed
on a single routing path. One situation in which we can use packet-
switched connections happens when the computation-to-communi-
cation (CTC) ratio of an AIE is more than one. During the compu-
tation of AIE 0, the port assigned to this AIE is idle and thus can
be used to transfer data to another AIE, say AIE 1, by assigning a
different header that matches the destination ID of AIE 1.

4 CHARM SINGLE ACCELERATOR DESIGN
In this section, we describe the dataflow and mapping strategy
for a single MM acc using hundreds AIEs in Section 4.1. Then, in
Section 4.2, we present the data reuse optimizations to balance the

1 // Off-Chip <-> On-Chip Time Loop
2 for(int i.0=0;i.0<TX;i.0++) // TX=M/(TI*A*X)
3 for(int j.0=0;j.0<TZ;j.0++) // TZ=N/(TJ*C*Z)
4 for(int k.0=0;k.0<TY;k.0++) // TY=K/(TK*B*Y)
5 copyDataFromOffChipOnChip(...)
6 // PL On-chip Buffer Reuse Time Loop
7 for(int i.1=0;i.1<X;i.1++) // X
8 for(int j.1=0;j.1<Z;j.1++) // Z
9 for(int k.1=0;k.1<Y;k.1++) // Y
10 copyDataFromOnChiptoAIE(...)
11 // AIE Array Spatial Loop
12 for(int i.2=0;i.2<A;i.2++) // A
13 for(int j.2=0;j.2<C;j.2++) // C
14 for(int k.2=0;k.2<B;k.2++) // B
15 // Single AIE 2D-SIMD Vectorization Loop
16 for(int i.3=0;i.3<TI;i.3++)
17 for(int j.3=0;j.3<TJ;j.3++)
18 for(int k.3=0;k.3<TK;k.3++)
19 ...
20 2D-SIMD(i.3,j.3,k.3);

Listing 1: Pseudocode of MM loop tiling and dataflow.

AI Engine Packet-SwitchBroadcast

Broadcast

D0

Packet Switch

D0 D1 D2 D3

D’0 D’1 D’2 D’3

Scatter

2 3

Gather

Combined

D0

T1

T2

T3

D0 D0
D0

T0

D1D1 D1
D1

D2D2 D2
D2

D3D3 D3
D3

Figure 4: Combining broadcast circuit-switched and packet-
switched connections to reduce required I/O to AIE array.

massive computation parallelism and communication among AIEs
and between PL↔AIEs and PL↔DDR.

4.1 Dataflow and Mapping Strategy of a Single
Matrix Multiply Accelerator

Listing 1 depicts the overall four-level tiling and mapping strategy
for a basic dense matrix-matrix multiply. The innermost loop tiling
(Lines 16-20) implements MM on a single AIE core and exploits
instruction-level parallelism and data-level parallelism by issuing
fully pipelined 2D-SIMD (vector-matrix multiplication) instructions.
Each AIE stores a (TI×TK) LHS and a (TK×TJ) RHS matrix and
computes a (TI×TJ) output matrix in its local memory. The second-
innermost loop tile (Lines 12-14) represents the spatial distribution
of execution across different AIE cores in the AIE array. These
loops are fully unrolled and computed on (A×B×C) AIE cores in
a parallel fashion. The spatial distribution also corresponds to the
number of required IOs, which will be discussed in Section 4.2. The
third-innermost time loop tile (Lines 7-9) represents the sequential
processing of data stored in PL on-chip memories. The data from on-
chip PL buffers are fed into the AIE array (X×Y×Z) times, and the
intermediate partial sum from the AIE array is accumulated on PL.
The outermost loop (Lines 2-4) represents the temporal processing
of data stored in off-chip memory, enabling the processing of large
matrices that do not fit in on-chip memory. The loop boundary can
be decided by the overall input matrix size (M, K, N).

156

CHARM: Composing Heterogeneous AcceleRators for Matrix Multiply on Versal ACAP Architecture FPGA ’23, February 12–14, 2023, Monterey, CA, USA

4.2 Data Reuse in Multiple Levels
When designing each acc, we adopt a bottom-up strategy and ex-
plore data reuse at each level. Firstly, at a single AIE level, we make
full use of the seven-way VLIW capability of the AIE vector pro-
cessor to achieve fully pipelined MAC operations by reusing the
AIE local register and the local memory.

Secondly, at the PL↔AIEs level, when feeding data to tens or
hundreds of AIEs, as the number of PLIOs connecting the AIE array
and PL is much smaller than the total number of AIE cores, we
reduce the number of required PLIO by exploring the data broadcast
and packet-switch (described in Section 3.2) mechanism. Figure 4
shows how we reuse one single PLIO port by combing broadcast
with packet-switch. Assume that we have a 4×4 AIE array that
calculates an MM with size 1×4×4 (1 MAC/AIE), and it takes one
cycle for one AIE to get the left-hand-side (LHS) and the right-hand-
side (RHS) operands and four cycles to finish one multiplication
which makes the CTC ratio equal to 4. By leveraging the data reuse
opportunity in MM (e.g., the row of LHS can be reused by different
columns of RHS), we can broadcast the first data from LHS to the
first row of AIE arrays at Time 0 utilizing one PLIO port as shown in
solid lines. At Time 1, by specifying a different destination header,
we can transfer the second data of LHS to the second row of the
AIE array by reusing the same PLIO port. At Time 2 and Time 3, the
third and fourth data of LHS are sent to the third and fourth rows
of AIEs. At Time 4, the first row of AIEs finishes the computation,
and the PLIO completes the data transfer to the fourth row of AIEs.
Therefore, in this case, we can use one PLIO port to send LHS data
to 16 AIEs without any performance degradation.

Thirdly, in PL↔DDR, we further allocate three sets of on-chip
buffers for each acc to store the LHS, the RHS, and the output
matrices so that a tile of LHS with size (X×A×TI) × (Y×B×TK) can
be reused on-chip for (Z×TJ) times. The buffer size and reuse rate
for RHS and output matrices can be calculated in the same way.
Besides, the double-buffering technique is applied to three buffers
to overlap the off-chip data movement with the computation. By
greatly exploring the data reuse opportunities at multiple levels,
our system can sustain high computation efficiency under limited
off-chip bandwidth, i.e., 25.6 GB/s of DIMM-DDR4 on VCK190.

5 CHARM ARCHITECTURE AND CHARM
FRAMEWORK TO COMPOSE MULTIPLE
DIVERSE ACCELERATORS

In this section, we introduce the CHARM architecture in Section 5.1
and CHARM framework overview in Section 5.2. We then discuss
each module within the framework from Section 5.3 to Section 5.6.

5.1 CHARM Architecture
Figure 5 illustrates the CHARM architecture with one or more di-
verse MM accs in the system and other kernel accs for non-MM
kernels within an end-to-end deep learning application. We parti-
tion the AIE array for multiple MM accs (two in this example). For
each MM acc, we design a specialized DMA module that contains
the data transferring control logic and on-chip buffer according
to the tiling strategy. The different AIE partitions communicate
with their corresponding DMA modules through the PLIO inter-
face and NOC. We refer to the AIE array, its corresponding PLIO,

V
N

O
C

V
N

O
C

Processor
System
(ARM)

HNOC

HNOC

DDRMC

LHS

DMA0

RHS

Output

LHS

DMA1

RHS

Output

Softmax

Layernorm

Transpose1

Transpose0

AIE ArrayMM0

PL

MM1

DDRMC

Figure 5: System architecture of multiple diverse MM accs
and other non-MM accs.

Model

Bandwidth
Profiler

Resource
Constraints

Inputs

CHARM Diverse
Accelerator Composer

AIE Gen

PL Gen

HOST Gen

CHARM Automatic
Code Generator

CHARM Framework

AIE
Compiler

V++
Compiler

GCC

Backend

Design
Space

Exploration

Output

*.xclbin

CHARM
Runtime

Host

CHARM Runtime
Configuration

Figure 6: CHARM framework overview.

and the DMA module as one MM acc design. For each non-MM
kernel, e.g., transpose, softmax, and layer normalization in BERT,
ViT models, we design one acc for each type of kernel on the PL
side. Each non-MM acc contains DMA, computation logic, and local
buffers. For these communication-bound kernels, the design goal
is to achieve near-peak off-chip bandwidth. When running these
kernels, as they consume all the off-chip bandwidth, we choose
to sequentially launch these non-MM and communication-bound
kernels before or after MM acc(s).

5.2 CHARM Framework Overview
We illustrate the proposed CHARM framework overview in Fig-
ure 6. The CHARM framework takes the application model, plat-
form off-chip bandwidth profiling, and platform hardware resource
constraints as input, performs automated optimization and code
generation, and launches backend compilers to generate the ready-
to-run binaries as output. There are several modules in the CHARM
framework: (1) On top of CDSE, CDAC finds the optimal design
with the highest throughput and outputs the configurable design
parameters for each acc. It also generates a runtime config file that
specifies which acc should be called for a certain kernel. (2) CACG
takes the configurable parameters generated from CDAC as input,
implements the design, and generates all the needed source code
files for AIEs, PL, and host CPUs. CHARM calls the corresponding
backend tools to generate both the hardware bitstream and host
binaries. (3) CRTS takes the runtime config files from CDAC and
kernel dependency graph as input and schedules the kernels in the
task pools onto available accs.

157

FPGA ’23, February 12–14, 2023, Monterey, CA, USA Jinming Zhuang et al.

5.3 CHARM Design Space Exploration (CDSE)
for a Single Acc

DSE Configurable parameters: A, B, C, X, Y, Z. In order to attain
optimized throughput for each diverse accelerator, we design CDSE,
which takes matrix sizes (M, K, and N), optional user-specified hard-
ware constraints, and hardware platform off-chip characterization
database as input and perform an analytical model-based search.
During CDSE, we set the single AIE workloads to 32×32×32, i.e.,
TI=TK=TJ=32. We achieve up to 95% of kernel efficiency for MM,
utilize 75% of the AIE local memory in this design point, and ob-
tain the CTC ratio of 4. The outputs of CDSE are the configurable
parameters, including A, B, C, X, Y, Z that meet all the hardware
constraints. The parameters A, B, C determine the number of AIE
and PLIO used in the AIE array. X, Y, Z, A, B, C together with pre-
fixed parameters TX, TY, TZ decide the number of utilized on-chip
buffers. This optimization problem can be formulated as an integer
programming (IP) optimization problem shown as below. AIEnum,
PLIOin, PLIOout and On_chipRAM represent the user-specified hard-
ware constraints:

maxThroughput = M · K · N · 2/TIME (1)

s.t.𝐴 × 𝐵 ×𝐶 ≤ AIEnum (2)

Portin ≤ PLIOin,

Portout ≤ PLIOout
(3)

Buff ≤ On_chipRAM (4)

AIE-Array Tiling Selection. Since {A, B, C} are fully unrolled and
mapped to the AIE Array, the multiplication of the unroll factors A,
B, and C should be less than or equal to the total number of AIEs
in Equation 2. The number of packet-switch ports is determined
by {A, B, C} and the I/O reuse mechanism described in Section 4.2.
They should meet the input and output PLIO resource constraints.
The input and output PLIO numbers can be obtained by:

Port𝑖𝑛 = ⌈𝐴 · 𝐵/CTC ⌉
+⌈𝐶 · 𝐵/CTC ⌉

Port𝑜𝑢𝑡 = ⌈𝐴 · 𝐶/CTC ⌉
(5)

PL Tiling Selection. On-chip PL buffers are allocated in order to
amortize the 46x bandwidth gap between off-chip to PL and PL
to AIE-Array by increasing the data reuse rate. Equation 6 shows
the size of LHS, RHS, output buffers, and their off-chip to on-chip
communication time. BPD refers to bytes per data and BW_L,R,O
are the off-chip bandwidth measured from bandwidth profiling.

BuffL = (𝑋 · 𝐴 · 𝑇 𝐼) · (𝑌 · B · TK) · BPD
BuffR = 𝑌 · 𝑍 · 𝐵 · 𝐶 · TK · TJ · BPD
BuffO = 𝑋 · 𝑍 · 𝐴 · 𝐶 · TI · TJ · BPD
Buff = 2 · (Buff 𝐿 + Buff 𝑅 + Buff𝑂)
TimeL,R,O = Buff 𝐿,𝑅,𝑂/BW𝐿,𝑅,𝑂

(6)

Performance Modeling. To calculate the overall execution time,
the scheduling of data communication between off-chip to on-chip
and the AIE array computation should be considered. The compu-
tation time for all the on-chip time loops, i.e., Line 6 in Listing 1,
can be defined by Equation 7 in which MAC represents the the-
atrical MAC operation that one AIE engine can do in one cycle,
and Eff refers to the real efficiency that the computation kernel

achieves. We consider both single AIE and AIE array pipeline ef-
ficiency (PL↔AIE) here and assign the overall efficiency to 80%.
For the off-chip to on-chip scheduling, as described in Listing 1,
the loop order of the outermost loop is TY→TZ→TX, thus, the
memory access time for LHS and RHS will happen TX×TX×TZ
times in total. The overall execution TIME can be calculated by
Equation 8. This is an equation for illustration purposes where we
leave out the details on the formulation of time spent storing the
output and prologue and epilogue time in the pipeline.

Time_comp = (𝑋 · 𝑌 · 𝑍 · 𝑇 𝐼 · 𝑇𝐾 · 𝑇 𝐽 /MAC)/Eff (7)

TIME =𝑚𝑎𝑥 ([TimeL, TimeR, Time_comp])
· (𝑇𝑋 · 𝑇𝑌 · 𝑇𝑍) (8)

For any specific shape(s), all the possible configurable parameters
will be evaluated in an exhaustive fashion. After CDSE, top-ranked
optimized design points will be reported.

5.4 CHARM Diverse Acc. Composer (CDAC)
Two-step search algorithm in CDAC. To achieve overall op-
timized throughput when mapping diverse sizes of MM kernels
on multiple accs, we propose a sort-based two-step algorithm in
CDAC. In the first step of CDAC, we partition the MM kernels
of different workloads within an input model to multiple groups.
The number of groups equals the number of diverse accs, which is
a hyperparameter in CDAC. After the workload partition, in the
second step, we generate a resource partition candidate that spec-
ifies the resource budget for each accelerator to be proportional
to the total number of operations from the assigned MM kernel(s).
Under the assigned workload and assigned resource, we search all
valid candidates of configurable parameters (A,B,C,X,Y,Z) for each
accelerator. We then fine-tune the memory resource partition to
generate more resource partition candidates. After the memory
fine-tuning, we generate a new workload partition and redo the
resource partition and configurable parameter search which fur-
ther optimize the system throughput of all the accs. We discuss the
details of each step as follows.
1st Step: Workload Assignment. To improve the overall through-
put of the diverse acc architecture, we need to properly assign the
MM kernels to the accs and make them work concurrently with a
similar execution time. However, mapping an application with n
kernels to num accs suffers from the exponential time complexity
as the total mapping search space scales as O(𝑛𝑢𝑚𝑛) . To better
scale larger models that contain more kernels, i.e., a larger n, we
propose a sort-based algorithm to partition the workload with re-
duced time complexity as O(

(𝑛−1
𝑛𝑢𝑚−1

)
) = 𝐶𝑛−1

𝑛𝑢𝑚−1. As shown in
Algorithm 1, CDAC first sorts the different shapes of the MM ker-
nels by their number of operations (Line 4) so that MMs with larger
and smaller sizes can be properly divided. Then we divide the sorted
MM kernels into n groups (Lines 5-6). For example, if there are eight
different shapes of kernels that need to be mapped to num=2 accs,
after sorting the kernels, we put one separator between any two
kernels to separate all kernels into two groups. In total, it gives us
𝐶
(8−1
2−1

)
= 7 grouping design choices.

2nd Step: Hardware Resource Partitioning. For each workload
assignment, we perform DSE to find the optimized acc configurable
parameters under the partitioned hardware resource constraints,

158

CHARM: Composing Heterogeneous AcceleRators for Matrix Multiply on Versal ACAP Architecture FPGA ’23, February 12–14, 2023, Monterey, CA, USA

Algorithm 1 Diverse Accelerator Composer Algorithm
Input: layer[n], bw, hw_sr, num, ubound
⊲ layer[n] are n layers in an application. bw refers to bandwidth, hw_sr includes the
AIE, PLIO, RAM resources, num refers to the number of accs, ubound is the
hyperparameter for memory tuning
Output: Workload[num], final_Acc[num]

⊲ Workload and final_Acc contains the workload assignment and the hardware
configuration for each acc respectively
1: BW ← bw/num_acc
2: HW .RAM [:] ← hw_sr .ram/num_acc
3: final_cycle← inf
4: layer_sort [:] ← sort(layer)
5: for sche in range(𝐶

(n−1
num−1

)
) do

6: partition[:] ← partition(layer_sort [:], num, sche) ⊲ 1st step
7: op_portion[:] ← cnt(partition[:]) ⊲ 2nd step
8: update(HW .AIE[:],HW .PLIO[:], op_portion[:])
9: Acc[:], cycle[:] ← Acc_search(HW , BW , partition[:])
10: ⊲ Sequentially launch CDSE
11: while tune_cnt ≠ ubound do ⊲ Memory tuning
12: index ← max(cycle[:])
13: update(HW .RAM [:], index) ⊲ Increase the memory of the slowest acc
14: Acc[:], cycle[:] ← Acc_search(HW , BW , partition[:])
15: if max(cycle[:]) < final_cycle then ⊲ Update optimal point
16: final_cycle← max(cycle[:])
17: final_Acc[:] ← Acc[:])
18: Workload [:] ← partition[:]
19: tune_cnt++
20: Define Acc_search(HW , BW , partition[:]) :
21: for acc in range(num) do
22: CDSE(partition[acc],HW [acc], BW [acc])
23: return Acc[:],Cycle[;]

including the number of AIEs, PLIO, on-chip RAM, and off-chip
bandwidth. To minimize the maximum execution time of all the
accs, CDAC assigns the number of AIEs and PLIO constraints pro-
portional to the total number of operations assigned to the acc
(Lines 7-8). For the number of on-chip RAMs, we first evenly dis-
tribute it (Line 2). After sequentially launching CDSE to find the
configuration of every acc once (Lines 9-10), we apply a memory
fine-tuning step to optimize the memory allocation. It finds the
index of the acc that consumes the most time (Line 12) and then
tries to explore a better configuration by increasing the memory
allocation of this acc while decreasing the memory allocation of
others’(Line 13-14). If a better result is found, we update the global
optimal execution cycles and corresponding acc configuration set-
tings (Line 15-18). Note that, in the current model, we assume each
acc evenly occupies the off-chip bandwidth (Line 1) and leave the
discussion of the off-chip bandwidth partition for future work.

5.5 CHARM Auto. Code Generation (CACG)
After finding the hardware design parameters of optimized de-
signs from CDAC, we implement CACG, including AIEGen, PLGen,
and HostGen, to generate the corresponding source code for AIEs,
PL, and host CPU. AIEGen takes the tiling factor of a single AIE
(TI,TK,TJ) and AIE Array (A,B,C) as input and instantiates the corre-
sponding number of AIE cores. It leverages the C++-based Adaptive
Data Flow (ADF) Graph API [44] to build connections among AIE
cores through the AXI network and connections between AIE Array
and PL through PLIOs. Using the PL level (X,Y,Z) design parameters,
PLGen generates HLS C/C++ code that allocates on-chip buffers
on the PL side and implements the data transferring modules for
sending/receiving data to/from the AIE array. HostGen emits the
Xilinx runtime library (XRT) API-based host code.

After code generation, CHARM launches the vendor tools, in-
cluding the AIE compiler and the V++ compiler to generate the
output object files libadf.a and kernel.xo which are linked into
one xclbin, i.e., the hardware bitstream of the design. The GCC
compiler compiles XRT-API-based host code to host program runs
on the ARM CPU for kernel scheduling and system controls.

5.6 CHARM Runtime Scheduler (CRTS)
Algorithm 2 Runtime Scheduler Algorithm
Input: Graph, num, task_pool[task][layer]
Output: Runtime scheduling for each accelerator
1: while (1) do ⊲ Assign ready tasks to corresponding Accs
2: for acc in range(num) do
3: if ¬𝐴𝑐𝑐 [𝑎𝑐𝑐] .idle() then
4: Continue
5: for 𝑡 in range(tasks) do
6: for 𝑙 in range(layer) do
7: if task_pool [𝑡] [𝑙] ≠ ∅ ∧ task_pool [𝑡] [𝑙] .valid() then
8: Acc[acc] .assign(task_pool [𝑡] [𝑙])
9: Continue line 2
10: while (1) do ⊲ Update task_pool according to dependency graph
11: for acc in range(num) do
12: if Acc[acc] .finish() then
13: task_pool.update(Graph)
14: Acc[acc] .update(idle)

To achieve high throughput while maintaining relatively low
latency under dependency constraints within each task, we propose
CRTS that runs on the ARM CPU during runtime. Algorithm 2 lists
the scheduler algorithm. It takes the dependency graph, number of
accelerators, and layer assignment configuration file generated by
CDAC as input. There are two parallel processes in CRTS.

The first process keeps tracking to check if there are any idle
accs we can assign tasks to (Lines 2-3). CRTS traverses the layers
assigned to this acc following a first-in-first-out principle (Lines
5-6). If the layer is still in the task pool, it means that it has not been
issued. Suppose all the preceding layer(s) of the current layer have
been executed, i.e., dependency resolved. In that case, CRTS assigns
this valid layer to the corresponding acc (Lines 7-8) and continues
to track other accs (Line 9). The second process keeps track of the
status of every acc to see if it has finished the workload (Lines 12-13)
and updates the task pool according to the dependency graph, as
well as changing the status of the acc (Line 14) to idle.

6 EXPERIMENT RESULTS
In this section, we first illustrate the single AIE efficiency and single
MM acc throughput in Section 6.1 and 6.2. In Section 6.3, we imple-
ment different CHARM designs, including one monolithic MM acc,
one specialized MM acc, two-diverse MM accs, and eight-duplicate
MM accs for four applications: BERT, ViT, NCF, and MLP. All the
experiments are conducted on VCK190 with 230MHz on PL and
1GHz on AIE. AMD/Xilinx Vitis version 2021.1 is used as the compi-
lation backend tool. When measuring the power consumption, we
iterate each application for more than 60s and report the average
value by employing the board evaluation and management tool,
AMD/Xilinx BEAM [45].

6.1 Single AIE Kernel Efficiency Comparison
In this section, we showcase our single AIE MM computation effi-
ciency under different matrix sizes for fp32. We leverage the AIE
intrinsics [46] to program the single kernel design and obtain the

159

FPGA ’23, February 12–14, 2023, Monterey, CA, USA Jinming Zhuang et al.

Table 2: Single AIE MM comparison under fp32 data type.

H-GCN[48] CHARM (this work)
Size: M x K x N MACs/Cyc Eff MACs/Cyc Eff Eff gain

16 × 16 × 16 2.34 29.30% 6.18 77.22% 2.64x
32 × 32 × 32 3.64 45.50% 7.57 94.70% 2.08x
64 × 64 × 8 3.64 45.50% 7.54 94.29% 2.07x

Table 3: Performance comparison in GFLOPS between on-
board measurements and CDSE analytical modeling estima-
tions under different matrix sizes. The error rates in percent-
age show that CDSE achieves a high prediction accuracy.

Square MM size On-board Estimation Error Power(W)

64 0.41 0.40 -2% 32.58
128 3.36 3.22 -4% 32.86
256 25.58 25.79 1% 34.66
512 176.24 178.42 1% 37.95
1024 1103.46 1123.81 2% 41.78
1536 1633.13 1649.01 1% 46.02
2048 1672.76 1688.17 1% 47.87
3072 2850.13 2895.90 2% 50.65
4096 2718.42 2773.26 2% 51.97
6144 3277.99 3363.89 3% 53.57

execution cycle of our single AIE design by simulating on the Versal
ACAP AI Engine System C simulator [47], a cycle-accurate architec-
ture simulator. As shown in Table 2, our single AIE can achieve up
to 7.57 MACs/cycle and 94.70% peak performance when MM size
equals 32×32×32. Compared to the AIE dense MM kernel efficiency
reported in H-GCN [48], our single kernel obtains 2.26× average
efficiency gain. For the whole system design, we choose 32×32×32
as our single kernel as it achieves high computation efficiency and
the total size of LHS, RHS and output matrices are within 16 KB so
that they fit in the AIE local memory and can be double buffered.

6.2 Performance for Square MMs on One
Monolithic Accelerator

We evaluate the throughput of one monolithic acc design and com-
pare the performance between the modeling estimation from CDSE
and the on-board measurement. We build the monolithic design
by using 384 AIEs and over 83% of on-chip RAM utilization with
the AIE running at 1GHz and the PL side at 230MHz. As shown in
Table 3, the throughput of the one-acc monolithic design rises as
the square MM size increases. While it achieves 3.27 TFLOP/s at
size 6144, the throughput at size 64 is only 0.41 GFLOPs. CHARM
CDSE is capable of precisely estimating the on-board execution
time with an average estimation error rate of only 2.9%.

We compare the throughput of the same MM application imple-
mented only in the PL part of VCK190 using the state-of-the-art
systolic-array-based framework AutoSA [22] for fp32 data type.
The PL side of VCK190 is featured with 1968 DSP58 IPs. Instead of
using five DSP48 to calculate the floating point multiplication in
the previous generation board, it only consumes one DSP58.

As shown in Table 4, the CHARM single MM acc achieves 3.27
TFLOPs throughput, 5.54× throughput and 1.93× energy efficiency
gains compared to the PL-only design on VCK190.

Table 4: Comparison between PL only design and PL RAM +
AIE design in CHARM on VCK190.

PL [22] CHARM
Data Type Float32 Float32

Frequency PL:200MHz PL:230MHz
URAM 0 384
BRAM 923 764
DSP/AIE DSP58:1536 AIE:384
TFLOPs 0.59 (1x) 3.27 (5.54x)
Power(W) 18.60 53.40
Energy Eff 1x 1.93x

Table 5: MM sizes in BERT, ViT, NCF, MLP.

Model # of layer M K N batch dot size

BERT

4 3072 1024 1024 N/A
1 3072 4096 1024 N/A
1 3072 1024 4096 N/A
1 512 64 512 96
1 512 512 64 96

ViT

1 3072 3024 1024 N/A
1 3072 1024 1024 N/A
1 3072 1024 4096 N/A
1 3072 4096 1024 N/A
1 3072 1024 3048 N/A
2 64 64 64 768

NCF

1 3072 4096 2048 N/A
1 3072 2048 1024 N/A
1 3072 1024 512 N/A
1 3072 512 256 N/A
1 3072 256 128 N/A
1 3072 128 64 N/A
1 3072 64 32 N/A
1 3072 32 16 N/A
1 3072 32 1 N/A

MLP
1 3072 2048 4096 N/A
2 3072 4096 4096 N/A
1 3072 4096 1024 N/A

Table 6: Time breakdown for different types of kernels in the
end-to-end solutions that achieves the highest throughput
for BERT, ViT, NCF and MLP.

Kernel BERT ViT NCF MLP

MM 57.2ms 57.7ms 40.4ms 11.9ms
Layernorm 4.5ms 4.5ms 0 0
Softmax 18.7ms 2.3ms 0 0
Transpose 5.2ms 5.2ms 0 0

6.3 End-to-End Performance
We apply the CHARM framework to four applications, BERT, ViT,
NCF, MLP. All the shapes of the MM kernels in these models are
listed in Table 5. We explore the number of accs from 1 to 8 and
showcase the representative CHARM designs, including one mono-
lithic MM acc, one specialized MM acc, two-diverse MM accs, and
eight-duplicate MM accs, for each application. The one monolithic
MM design is described in section 6.2, which stays the same for all
four applications. It is set as the baseline design for comparisons. All
the other MM acc designs are customized for each application and
are designed and implemented using the CHARM framework. All

160

CHARM: Composing Heterogeneous AcceleRators for Matrix Multiply on Versal ACAP Architecture FPGA ’23, February 12–14, 2023, Monterey, CA, USA

Table 7: On-board throughput and power comparisons under different MM accs configurations for BERT, ViT, NCF, MLP.

App CHARM cfg LUT BRAM URAM DSP AIE GFLOPS Power(W) GFLOPS/W (Ratio)

BERT

One_mono 103959(11.55%) 764 (79.01%) 384 (82.94%) 165 (8.38%) 384 (96%) 276.8 37.0 7.48 (1x)
One_spe 90351(10.04%) 515 (53.26%) 64 (13.82%) 117 (5.95%) 256 (64%) 515.4 32.4 15.91 (2.13x)

Two_diverse 343774(38.20%) 534 (55.22%) 272 (58.75%) 442 (22.46%) 288 (72%) 1464.2 40.7 35.98 (4.81x)
8_duplicate 222956(24.78%) 664 (68.67%) 384 (82.94%) 488 (24.80%) 256 (64%) 534.2 34.2 15.62 (2.09x)

ViT

One_mono 103959(11.55%) 764 (79.01%) 384 (82.94%) 165 (8.38%) 384 (96%) 49.5 32.4 1.53 (1x)
One_spe 76661(8.52%) 275 (28.44%) 64 (13.82%) 187 (9.50%) 256 (66%) 217.1 28.0 7.75 (5.08x)

Two_diverse 240563(26.73%) 590 (61.01%) 320 (69.11%) 299 (15.19%) 264 (72%) 1609.0 39.6 40.63 (26.60x)
8_duplicate 222956(24.78%) 664 (68.67%) 384 (82.94%) 488 (24.80%) 256 (64%) 382.2 32.8 11.65 (7.63x)

NCF

One_mono 103959(11.55%) 764 (79.01%) 384 (82.94%) 165 (8.38%) 384 (96%) 1736.0 45.2 38.41 (1x)
One_spe 103959(11.55%) 764 (79.01%) 384 (82.94%) 165 (8.38%) 384 (96%) 1736.0 45.2 38.41 (1.00x)

Two_diverse 161597(17.96%) 790 (81.70%) 352 (76.03%) 326 (16.57%) 384 (96%) 1730.9 45.1 38.38 (0.99x)
8_duplicate 222956(24.78%) 664 (68.67%) 384 (82.94%) 488 (24.80%) 256 (64%) 671.0 35.0 19.17 (0.50x)

MLP

One_mono 103959(11.55%) 764 (79.01%) 384 (82.94%) 165 (8.38%) 384 (96%) 2936.7 51.4 57.13 (1x)
One_mono 103959(11.55%) 764 (79.01%) 384 (82.94%) 165 (8.38%) 384 (96%) 2936.7 51.4 57.13 (1.00x)
Two_diverse 148158(16.46%) 919 (95.04%) 448 (96.76%) 344 (17.48%) 384 (96%) 2386.1 48.8 48.90 (0.86x)
8_duplicate 222956(24.78%) 664 (68.67%) 384 (82.94%) 488 (24.80%) 256 (64%) 696.0 35.2 19.77 (0.35x)

Table 8: Resource utilization for each acc in the design for BERT with two MM diverse accs, four non-MM accs.

Type REG LUTLogic LUTMem BRAM URAM DSP AIE

MM0+DMA0+buffer 96790 (5.55%) 91034 (10.41%) 835 (0.19%) 515 (53.26%) 256(55.29%) 246(12.50%) 256(64%)
MM1+DMA1+buffer 62415 (3.58%) 94739 (10.83%) 37668 (8.48%) 19 (1.96%) 16 (3.46%) 196(9.96%) 32 (8%)

Layernorm 45101 (2.58%) 33939 (3.88%) 4234 (0.95%) 15 (1.55%) 90 (19.44%) 129(6.55%) 0 (0%)
Softmax 34270 (1.96%) 33623 (3.84%) 2854 (0.64%) 243 (25.13%) 0 (0%) 151(7.67%) 0 (0%)

Transpose0 14217 (0.81%) 6926 (0.79%) 1097 (0.25%) 15 (1.55%) 0 (0%) 94 (4.78%) 0 (0%)
Transpose1 33967 (1.95%) 58510 (6.69%) 32512 (7.32%) 15 (1.55%) 0 (0%) 19 (0.97%) 0 (0%)

MM0
MM1

Buffer+DMA0
Buffer+DMA1

Softmax

Layernorm
Transpose0

Transpose1

Figure 7: System implementation layout of the two-diverse
MM accs and four non-MM accs for BERT.

the designs of the same application use the same non-MM kernels.
Table 7 reports the on-board throughput and power consumption
under different acc configurations for all the four applications.

CHARM achieves 1.46 TFLOPs, 1.61 TFLOPs, 1.74 TFLOPs, and
2.94 TFLOPs maximum throughput for the MMs in BERT, ViT, NCF,
MLP. Table 6 shows the time breakdown for the MM, the layernorm,
the softmax, and the transpose for each end-to-end application. We
highlight the best design(s) for each application in Table 7. For BERT
and ViT, the two-diverse MM accs designs are the best, whereas for
NCF and MLP, one-acc designs are the best. This is because BERT
and ViT have both large and small MMs whereas MLP only has
large MMs. NCF also has both large and small MMs. However, small

110ms
151ms

193ms

234ms

012 3 4 5
6 7MM1

MM0

Figure 8: Timeline of four tasks scheduled on 2 accs for BERT.

MMs consume less than 0.8% of the total computation, and designs
favoring the large MMs stand out as the best. The eight-duplicate
designs are inferior for all the applications due to insufficient data
reuse for each acc.

For BERT and ViT, when compared to one monolithic design,
the customization of using one specialized acc design for a specific
application provided by CHARM gives 2.13×, 5.08× gain on energy
efficiency (GFLOPs/W), respectively. The additional design spaces
explored by using more than one-acc, with heterogeneous and
diverse shaped accs provided by CHARM framework, give us 2.25×,
5.24× extra energy efficiency gains for BERT and ViT, respectively.
These gains demonstrate the innovative design methodology
of CHARM, i.e., composing heterogeneous accelerators.

We show the implementation layout of the two-diverse MM acc
design, i.e., the best design for BERT, in Figure 7. This is also the
layout corresponding to Figure 5 that contains two MM accs and
four non-MM communication-bound accs. The hardware resource
utilization for each acc is reported in Table 8. The MM acc 0 pro-
vides high data reuse and computation efficiency when calculating
large MMs by utilizing 256 AIEs, 53.26% BRAM, and 55.29% URAM.
The MM acc 1 utilizes 32 AIEs, 1.96% BRAM, and 3.46% URAM
which provides the needed computation and communication with-
out resource over-provisioning for small MMs in BERT.

161

FPGA ’23, February 12–14, 2023, Monterey, CA, USA Jinming Zhuang et al.

1x DDR 4X DDR 16x DDR

Th
ro

u
gh

p
u

t
(G

FL
O

Ps
)

0

1000

2000

3000

4000

5000

6000 One_Mono One_spe 2 duplicate 2 diverse
4 duplicate 4 diverse 8 duplicate 8 diverse

Figure 9: Throughput comparison under different off-chip
bandwidth configurations from CHARM for BERT.

Explore latency-throughput tradeoff in CHARM. As shown in
Figure 8, we map four concurrent tasks on the BERT design with
two-diverse accs. Each task has eight MM kernels and there are
dependency edges, including 0→6, 1→6, 6→7, 2→7, 7→3→4→5,
where x→y means y depends on x. The other non-MM communica-
tion-bound kernels are not shown in the figure for illustrative
simplicity. It takes 110ms to finish the 1st task and 234ms to finish
the 4th task. For one-acc specialized design, each task latency is
162.6ms. Therefore, we have a design tradeoff, i.e., one specialized
acc design can process fine-grained tasks whereas two-diverse accs
design requires coarse-grained tasks to fill the pipeline of the two
accs. Comparing to the one specialized Acc design, with 0.67×,
0.92×, 1.18×, 1.43× latency for different tasks, we gain 2.8× overall
throughput in return. This illustrates that the CHARM framework
allows explorations on the latency-throughput tradeoff and users
can specify targets to let CHARMgenerate the designs that optimize
throughput while meeting the latency requirement or vice versa.
CHARMDSE Efficiency.We use CHARM to perform a sort-based
two-step search algorithm in CDAC. For BERT, compared to the
exhaustive search, CDAC finds the optimal solution in 170 seconds
whereas the exhaustive search takes 33 mins (#search iterations: 2M
vs. 58M) with MATLAB R2021b on an Intel Core i9-10900X CPU.

7 DISCUSSION OF ARCHITECTURE INSIGHT
AND MAPPING INSIGHT

By leveraging the strongmodeling capability provided by the CHARM
framework, we explore performance under different hardware ar-
chitecture changes (number of AIEs, on-chip storage size, off-chip
bandwidth) to do pre-silicon architecture explorations and provide
architecture design insights that could be helpful for future gener-
ation devices. Here, we leverage the CHARM modeling to report
throughput for different acc configurations including 1-, 2-, 4-, and
8-accs in the system. For each design (except one-acc), we have two
variants, duplicate accs or diverse accs. The explorations help us to
understand the following research questions:
Q1: Can we benefit from higher off-chip bandwidth?
A1: Yes. Versal needs higher off-chip bandwidth.
We first explore the performance, assuming the platform has more
off-chip bandwidth. We increase the DDR bandwidth by 4× to sim-
ulate multiple DDR banks and by 16× to simulate the case when
we have a high bandwidth memory (HBM). As shown in Figure 9,
the throughput from the best design for BERT in each bandwidth
configuration rises from 1.48 TFLOPs to 3.34 TFLOPs with 4× band-
width and to 4.80 TFLOPs with 16× bandwidth. The improvement
from 1× to 4× DDR is within expectation and implies that the

1

8
x AIE 1xAIE 4xAIE 4xAIE_RAM 4xAIE_RAM_DDR

Th
ro

u
gh

p
u

t
(G

FL
O

Ps
)

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000 One_spe 2 duplicate 2 diverse 4 duplicate
4 diverse 8 duplicate 8 diverse

Figure 10: Throughput comparison under different AIE, local
storage, and off-chip configurations from CHARM for BERT.

designs for BERT are bounded by off-chip bandwidth. The maxi-
mum throughput for 16× is bounded by the system computation
throughput as 4.8 TFLOPs, which is constrained by single kernel
computation efficiency (95%) and PL↔AIE efficiency(85%). Another
observation from Figure 9 is that the throughput improvement of
multiple accs is larger than that of the single acc since when the
number of accs increases, each acc has less data reuse and tends to
be more bounded by the off-chip bandwidth.
Q2: Can we leverage CHARM in future architectures?
A2: Yes. The last group in Figure 10 implies that as the com-
putation and communication parallelism further increases
in the future, there is a need for more heterogeneous acceler-
ator architectures and CHARM can serve as one of the most
promising solutions.
We explore the performance by varying the number of AIEs, on-
chip RAM, and off-chip bandwidth. We reduce the number of AIEs
to 1/8 of the current AIE array size to simulate the computation ca-
pacity of the previous generation FPGA where only PL is equipped
with DSPs and has about 1/8 of the theoretical fp32 peak perfor-
mance of Versal ACAP. As shown in the first group in Figure 10,
the performance difference between the minimum and the max-
imum under different acc configurations is less than 40%. As the
computation parallelism is reduced to 1/8, the waste resulting from
the inconsistency between the massive parallelism and the small
MM size is mitigated. On the other hand, as shown in the last group
in Figure 10, 4-diverse acc stands out as the best when we increase
AIE, on-chip storage, and off-chip bandwidth all by 4×. Simply
increasing AIEs does not give significant improvement whereas
increasing all the resources as a whole does.

8 CONCLUSION AND ACKNOWLEDGEMENT
In this paper, we propose the CHARM architecture and the CHARM
framework to provide a novel system-level design methodology for
composing heterogeneous accelerators for different MMs within an
application and generating end-to-end application solutions. We
will explore and extend CHARM for more applications and more
data types in our future work.

We acknowledge the support from the University of Pittsburgh
New Faculty Start-up Grant, NSF awards #2213701, #2217003 and
the support from CRISP, one of six SRC JUMP centers. We thank all
the reviewers for their valuable feedback and Marci Baun for help-
ing edit the paper. We thank AMD/Xilinx for FPGA and software
donation, and support from the AMD/Xilinx Center of Excellence
at UIUC, the AMD/Xilinx Heterogeneous Accelerated Compute
Cluster at UCLA, and the Center for Research Computing (CRC) at
University of Pittsburgh.

162

CHARM: Composing Heterogeneous AcceleRators for Matrix Multiply on Versal ACAP Architecture FPGA ’23, February 12–14, 2023, Monterey, CA, USA

REFERENCES
[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.
Advances in neural information processing systems, 30, 2017.

[2] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua.
Neural collaborative filtering. In Proceedings of the 26th international conference
on world wide web, pages 173–182, 2017.

[3] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for
image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[4] Yu Emma Wang, Gu-Yeon Wei, and David Brooks. Benchmarking TPU, GPU, and
CPU platforms for deep learning. arXiv preprint arXiv:1907.10701, 2019.

[5] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-
datacenter performance analysis of a tensor processing unit. In Proceedings of the
44th annual international symposium on computer architecture, pages 1–12, 2017.

[6] Onur Mutlu, Saugata Ghose, Juan Gómez-Luna, and Rachata Ausavarungnirun. A
modern primer on processing in memory. In Emerging Computing: From Devices
to Systems, pages 171–243. Springer, 2023.

[7] Geraldo F Oliveira, Juan Gómez-Luna, Lois Orosa, Saugata Ghose, Nandita Vi-
jaykumar, Ivan Fernandez, Mohammad Sadrosadati, and Onur Mutlu. DAMOV:
A new methodology and benchmark suite for evaluating data movement bottle-
necks. IEEE Access, 9:134457–134502, 2021.

[8] Hasan Hassan, Minesh Patel, Jeremie S Kim, A Giray Yaglikci, Nandita Vijayku-
mar, Nika Mansouri Ghiasi, Saugata Ghose, and Onur Mutlu. Crow: A low-cost
substrate for improving dram performance, energy efficiency, and reliability. In
Proceedings of the 46th International Symposium on Computer Architecture, pages
129–142, 2019.

[9] Jim Demmel. Communication avoiding algorithms. In 2012 SC Companion: High
Performance Computing, Networking Storage and Analysis, pages 1942–2000. IEEE,
2012.

[10] AMD/Xilinx. Versal Adaptive Compute Acceleration Platform.
[11] AMD. IP Overlays of Deep learning Processing Unit , 2022.
[12] Yu-Hsin Chen et al. Eyeriss: A spatial architecture for energy-efficient dataflow

for convolutional neural networks. ACM SIGARCH Computer Architecture News,
2016.

[13] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices. IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, 9(2):292–308, 2019.

[14] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo, Xiaob-
ing Feng, Yunji Chen, and Olivier Temam. Shidiannao: Shifting vision processing
closer to the sensor. In Proceedings of the 42nd Annual International Symposium
on Computer Architecture, pages 92–104, 2015.

[15] Eriko Nurvitadhi, Dongup Kwon, Ali Jafari, Andrew Boutros, Jaewoong Sim,
Phillip Tomson, Huseyin Sumbul, Gregory Chen, Phil Knag, Raghavan Kumar,
et al. Why compete when you can work together: Fpga-asic integration for
persistent rnns. In 2019 IEEE 27th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pages 199–207. IEEE, 2019.

[16] Andrew Boutros, Eriko Nurvitadhi, Rui Ma, Sergey Gribok, Zhipeng Zhao,
James C Hoe, Vaughn Betz, and Martin Langhammer. Beyond peak performance:
Comparing the real performance of ai-optimized fpgas and gpus. In 2020 Interna-
tional Conference on Field-Programmable Technology (ICFPT), pages 10–19. IEEE,
2020.

[17] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming
Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman, Logan Adams, Mahdi Ghandi,
et al. A configurable cloud-scale dnn processor for real-time ai. In 2018 ACM/IEEE
45th Annual International Symposium on Computer Architecture (ISCA), pages
1–14. IEEE, 2018.

[18] Tiziano De Matteis, Johannes de Fine Licht, and Torsten Hoefler. FBLAS: Stream-
ing linear algebra on FPGA. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1–13. IEEE, 2020.

[19] Johannes de Fine Licht, Grzegorz Kwasniewski, and Torsten Hoefler. Flexible
communication avoiding matrix multiplication on fpga with high-level synthe-
sis. In Proceedings of the 2020 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pages 244–254, 2020.

[20] Chen Zhang et al. Optimizing fpga-based accelerator design for deep convolu-
tional neural networks. In Proc. of FPGA, pages 161–170. ACM, 2015.

[21] Duncan J. M. Moss, Srivatsan Krishnan, Eriko Nurvitadhi, Piotr Ratuszniak, Chris
Johnson, Jaewoong Sim, Asit Mishra, Debbie Marr, Suchit Subhaschandra, and
Philip H. W. Leong. A customizable matrix multiplication framework for the intel
harpv2 xeon+fpga platform: A deep learning case study. In Proceedings of the
2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
FPGA ’18, page 107–116. Association for Computing Machinery, Feb 2018.

[22] Jie Wang, Licheng Guo, and Jason Cong. AutoSA: A Polyhedral Compiler for
High-Performance Systolic Arrays on FPGA. In The 2021 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays, FPGA ’21, page 93–104.
Association for Computing Machinery, Feb 2021.

[23] Linghao Song, Yuze Chi, Atefeh Sohrabizadeh, Young-kyu Choi, Jason Lau, and
Jason Cong. Sextans: A streaming accelerator for general-purpose sparse-matrix
dense-matrix multiplication. In Proceedings of the 2022 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, FPGA ’22, page 65–77, New York,
NY, USA, 2022. Association for Computing Machinery.

[24] Linghao Song, Yuze Chi, LichengGuo, and Jason Cong. Serpens: A high bandwidth
memory based accelerator for general-purpose sparse matrix-vector multiplica-
tion. In Proceedings of the 59th ACM/IEEE Design Automation Conference, pages
211–216, 2022.

[25] Jason Cong, Peng Wei, Cody Hao Yu, and Peipei Zhou. Latte: Locality Aware
Transformation for High-Level Synthesis. In 2018 IEEE 26th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM), pages
125–128, 2018.

[26] Peipei Zhou, Hyunseok Park, Zhenman Fang, Jason Cong, and André DeHon.
Energy Efficiency of Full Pipelining: A Case Study for Matrix Multiplication. In
2016 IEEE 24th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), pages 172–175, 2016.

[27] Peipei Zhou, Jiayi Sheng, Cody Hao Yu, Peng Wei, Jie Wang, Di Wu, and Ja-
son Cong. MOCHA: Multinode Cost Optimization in Heterogeneous Clouds
with Accelerators. In The 2021 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, FPGA ’21, page 273–279, New York, NY, USA, 2021.
Association for Computing Machinery.

[28] Xiaofan Zhang et al. Dnnbuilder: an automated tool for building high-
performance dnn hardware accelerators for fpgas. In Proc. ICCAD, page 56. ACM,
2018.

[29] Xiaofan Zhang, Hanchen Ye, JunsongWang, Yonghua Lin, Jinjun Xiong, Wen-mei
Hwu, and Deming Chen. DNNExplorer: a framework for modeling and exploring
a novel paradigm of FPGA-based DNN accelerator. In Proceedings of the 39th
International Conference on Computer-Aided Design, pages 1–9, 2020.

[30] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos Kozyrakis. Tetris:
Scalable and efficient neural network acceleration with 3d memory. In Proceed-
ings of the Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 751–764, 2017.

[31] Mingyu Gao, Xuan Yang, Jing Pu, Mark Horowitz, and Christos Kozyrakis. Tan-
gram: Optimized coarse-grained dataflow for scalable nn accelerators. In Proceed-
ings of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 807–820, 2019.

[32] Hyoukjun Kwon, Liangzhen Lai, Michael Pellauer, Tushar Krishna, Yu-Hsin
Chen, and Vikas Chandra. Heterogeneous dataflow accelerators for multi-dnn
workloads. In 2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), pages 71–83. IEEE, 2021.

[33] Nvidia. Website. http://nvdla.org/.
[34] Jason Cong, Hui Huang, Chiyuan Ma, Bingjun Xiao, and Peipei Zhou. A Fully

Pipelined and Dynamically Composable Architecture of CGRA. In 2014 IEEE
22nd Annual International Symposium on Field-Programmable Custom Computing
Machines, pages 9–16, 2014.

[35] Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian, and Glenn
Reinman. CHARM: A Composable Heterogeneous Accelerator-Rich Micropro-
cessor. In Proceedings of the 2012 ACM/IEEE International Symposium on Low
Power Electronics and Design, ISLPED ’12, page 379–384, New York, NY, USA,
2012. Association for Computing Machinery.

[36] AMD/Xilinx. Versal AI Core Series VCK190 Evaluation Kit, 2022.
[37] AMD/Xilinx. AI Engine Technology, 2022.
[38] Jason Cong, Bin Liu, Stephen Neuendorffer, Juanjo Noguera, Kees Vissers, and

Zhiru Zhang. High-level synthesis for FPGAs: From prototyping to deployment.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
30(4):473–491, 2011.

[39] Jason Cong, Jason Lau, Gai Liu, Stephen Neuendorffer, Peichen Pan, Kees Vissers,
and Zhiru Zhang. FPGA HLS Today: successes, challenges, and opportunities.
ACM Transactions on Reconfigurable Technology and Systems (TRETS), 15(4):1–42,
2022.

[40] Alexandros Papakonstantinou, Karthik Gururaj, John A Stratton, Deming Chen,
Jason Cong, and Wen-Mei W Hwu. FCUDA: Enabling efficient compilation of
CUDA kernels onto FPGAs. In 2009 IEEE 7th Symposium on Application Specific
Processors, pages 35–42. IEEE, 2009.

[41] Alexandros Papakonstantinou, Yun Liang, John A Stratton, Karthik Gururaj,
Deming Chen, Wen-Mei W Hwu, and Jason Cong. Multilevel granularity paral-
lelism synthesis on fpgas. In 2011 IEEE 19th Annual International Symposium on
Field-Programmable Custom Computing Machines, pages 178–185. IEEE, 2011.

[42] Yun Liang, Kyle Rupnow, Yinan Li, Dongbo Min, Minh N Do, and Deming Chen.
High-level synthesis: productivity, performance, and software constraints. Journal
of Electrical and Computer Engineering, 2012, 2012.

[43] Yuze Chi, Licheng Guo, Jason Lau, Young-kyu Choi, JieWang, and Jason Cong. Ex-
tending high-level synthesis for task-parallel programs. In 2021 IEEE 29th Annual

163

http://nvdla.org/

FPGA ’23, February 12–14, 2023, Monterey, CA, USA Jinming Zhuang et al.

International Symposium on Field-Programmable Custom Computing Machines
(FCCM), pages 204–213, 2021.

[44] AMD/Xilinx. Adaptive Data Flow API.
[45] AMD/Xilinx. Board evaluation and management Tool.
[46] AMD/Xilinx. AI Engine API and Intrinsics User Guide.

[47] AMD/Xilinx. Versal™ ACAP AI Engine System C simulator.
[48] Chengming Zhang, Tong Geng, Anqi Guo, Jiannan Tian, Martin Herbordt, Ang

Li, and Dingwen Tao. H-GCN: A graph convolutional network accelerator on
versal acap architecture. arXiv preprint arXiv:2206.13734, 2022.

164

	Abstract
	1 Introduction
	2 Prior Work
	3 Versal ACAP Architecture Overview
	3.1 Versal ACAP Architecture
	3.2 AIE Memory Model

	4 CHARM Single Accelerator Design
	4.1 Dataflow and Mapping Strategy of a Single Matrix Multiply Accelerator
	4.2 Data Reuse in Multiple Levels

	5 CHARM Architecture and CHARM Framework to Compose Multiple Diverse Accelerators
	5.1 CHARM Architecture
	5.2 CHARM Framework Overview
	5.3 CHARM Design Space Exploration (CDSE) for a Single Acc
	5.4 CHARM Diverse Acc. Composer (CDAC)
	5.5 CHARM Auto. Code Generation (CACG)
	5.6 CHARM Runtime Scheduler (CRTS)

	6 Experiment Results
	6.1 Single AIE Kernel Efficiency Comparison
	6.2 Performance for Square MMs on One Monolithic Accelerator
	6.3 End-to-End Performance

	7 Discussion of Architecture Insight and Mapping Insight
	8 Conclusion and Acknowledgement

